Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.cma.2004.06.033
Title: | Mixed finite elements of least-squares type for elasticity | Authors: | Duan, H.-Y. Lin, Q. |
Keywords: | Elasticity Least-squares method Stress-displacement |
Issue Date: | 18-Mar-2005 | Citation: | Duan, H.-Y., Lin, Q. (2005-03-18). Mixed finite elements of least-squares type for elasticity. Computer Methods in Applied Mechanics and Engineering 194 (9-11) : 1093-1112. ScholarBank@NUS Repository. https://doi.org/10.1016/j.cma.2004.06.033 | Abstract: | In terms of stress and displacement, the linear elasticity problem is discretized by a least-squares finite element method. In the case of a convex polygonal domain, the stress is approximated by the lowest-order Raviart-Thomas-Nédélec flux element, and the displacement by the linear C0 element. We obtain coerciveness and optimal H1, L2 and H(div)-error bounds, uniform in Lamé constant λ, for displacement and stress, respectively. Our method also allows the use of any other combination of conforming elements for stress and displacement, e.g., C0 elements for all variables. © 2004 Elsevier B.V. All rights reserved. | Source Title: | Computer Methods in Applied Mechanics and Engineering | URI: | http://scholarbank.nus.edu.sg/handle/10635/107335 | ISSN: | 00457825 | DOI: | 10.1016/j.cma.2004.06.033 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.