Please use this identifier to cite or link to this item:
https://doi.org/10.1111/j.1541-0420.2005.00321.x
Title: | Effects of variance-function misspecification in analysis of longitudinal data | Authors: | Wang, Y.-G. Lin, X. |
Keywords: | Asymptotic efficiency Correlated data Estimating functions Gaussian estimation Longitudinal data Misspecification Pseudolikelihood |
Issue Date: | Jun-2005 | Citation: | Wang, Y.-G., Lin, X. (2005-06). Effects of variance-function misspecification in analysis of longitudinal data. Biometrics 61 (2) : 413-421+649. ScholarBank@NUS Repository. https://doi.org/10.1111/j.1541-0420.2005.00321.x | Abstract: | The approach of generalized estimating equations (GEE) is based on the framework of generalized linear models but allows for specification of a working matrix for modeling within-subject correlations. The variance is often assumed to be a known function of the mean. This article investigates the impacts of misspecifying the variance function on estimators of the mean parameters for quantitative responses. Our numerical studies indicate that (1) correct specification of the variance function can improve the estimation efficiency even if the correlation structure is misspecified; (2) misspecification of the variance function impacts much more on estimators for within-cluster covariates than for cluster-level covariates; and (3) if the variance function is misspecified, correct choice of the correlation structure may not necessarily improve estimation efficiency. We illustrate impacts of different variance functions using a real data set from cow growth. | Source Title: | Biometrics | URI: | http://scholarbank.nus.edu.sg/handle/10635/105106 | ISSN: | 0006341X | DOI: | 10.1111/j.1541-0420.2005.00321.x |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.