Please use this identifier to cite or link to this item:
https://doi.org/10.1007/s10589-008-9231-4
Title: | Correlation stress testing for value-at-risk: An unconstrained convex optimization approach | Authors: | Qi, H. Sun, D. |
Keywords: | Augmented Lagrangian functions Convex optimization Newton's method Stress testing |
Issue Date: | Mar-2010 | Citation: | Qi, H., Sun, D. (2010-03). Correlation stress testing for value-at-risk: An unconstrained convex optimization approach. Computational Optimization and Applications 45 (2) : 427-462. ScholarBank@NUS Repository. https://doi.org/10.1007/s10589-008-9231-4 | Abstract: | Correlation stress testing is employed in several financial models for determining the value-at-risk (VaR) of a financial institution's portfolio. The possible lack of mathematical consistence in the target correlation matrix, which must be positive semidefinite, often causes breakdown of these models. The target matrix is obtained by fixing some of the correlations (often contained in blocks of submatrices) in the current correlation matrix while stressing the remaining to a certain level to reflect various stressing scenarios. The combination of fixing and stressing effects often leads to mathematical inconsistence of the target matrix. It is then naturally to find the nearest correlation matrix to the target matrix with the fixed correlations unaltered. However, the number of fixed correlations could be potentially very large, posing a computational challenge to existing methods. In this paper, we propose an unconstrained convex optimization approach by solving one or a sequence of continuously differentiable (but not twice continuously differentiable) convex optimization problems, depending on different stress patterns. This research fully takes advantage of the recently developed theory of strongly semismooth matrix valued functions, which makes fast convergent numerical methods applicable to the underlying unconstrained optimization problem. Promising numerical results on practical data (RiskMetrics database) and randomly generated problems of larger sizes are reported. © 2009 Springer Science+Business Media, LLC. | Source Title: | Computational Optimization and Applications | URI: | http://scholarbank.nus.edu.sg/handle/10635/104553 | ISSN: | 09266003 | DOI: | 10.1007/s10589-008-9231-4 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.