Please use this identifier to cite or link to this item: https://doi.org/10.1090/S0273-0979-2011-01358-1
Title: Why should the Littlewood-Richardson rule be true?
Authors: Howe, R.
Lee, S.T. 
Keywords: (Gl n, Gl n)-duality
Gl n tensor product algebra
Littlewood-richardson rule
Pieri rule
Issue Date: 2012
Citation: Howe, R., Lee, S.T. (2012). Why should the Littlewood-Richardson rule be true?. Bulletin of the American Mathematical Society 49 (2) : 187-236. ScholarBank@NUS Repository. https://doi.org/10.1090/S0273-0979-2011-01358-1
Abstract: We give a proof of the Littlewood-Richardson Rule for describing tensor products of irreducible finite-dimensional representations of GL n. The core of the argument uses classical invariant theory, especially (GL n, GL m)-duality. Both of the main conditions (semistandard condition, lattice permutation/ Yamanouchi word condition) placed on the tableaux used to define Littlewood-Richardson coefficients have natural interpretations in the argument. © 2011 American Mathematical Society.
Source Title: Bulletin of the American Mathematical Society
URI: http://scholarbank.nus.edu.sg/handle/10635/104479
ISSN: 02730979
DOI: 10.1090/S0273-0979-2011-01358-1
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.