Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0893-9659(00)00128-2
Title: Uniqueness of inverse scattering problem for a penetrable obstacle with rigid core
Authors: Pang, P.Y.H. 
Yan, G.
Keywords: Green's theorem for nonsmooth domains
Helmholtz equation
Inverse obstacle scattering
Multilayered obstacle
Neumann boundary condition
Issue Date: Feb-2001
Citation: Pang, P.Y.H., Yan, G. (2001-02). Uniqueness of inverse scattering problem for a penetrable obstacle with rigid core. Applied Mathematics Letters 14 (2) : 155-158. ScholarBank@NUS Repository. https://doi.org/10.1016/S0893-9659(00)00128-2
Abstract: In this paper, we discuss the inverse scattering problem for a penetrable obstacle with an impenetrable rigid core. Using a generalization of Schiffer's method to nonsmooth domains due to Ramm, we prove that the rigid core is uniquely determined by the far field patterns for a range of interior wavenumbers. © 2000 Elsevier Science Ltd. All rights reserved.
Source Title: Applied Mathematics Letters
URI: http://scholarbank.nus.edu.sg/handle/10635/104432
ISSN: 08939659
DOI: 10.1016/S0893-9659(00)00128-2
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.