Please use this identifier to cite or link to this item: https://doi.org/10.1007/BF02785966
Title: There exists a maximal 3-C.E. enumeration degree
Authors: Cooper, S.B.
Li, A.
Sorbi, A.
Yang, Y. 
Issue Date: Dec-2003
Citation: Cooper, S.B., Li, A., Sorbi, A., Yang, Y. (2003-12). There exists a maximal 3-C.E. enumeration degree. Israel Journal of Mathematics 137 (1) : 285-320. ScholarBank@NUS Repository. https://doi.org/10.1007/BF02785966
Abstract: We construct an incomplete 3-c.e. enumeration degree which is maximal among then-c.e. enumeration degrees for everyn with 3 ≤ n ≤ ω. Consequently then-c.e. enumeration degrees are not dense for any suchn. We show also that no lown-c.e. e-degree can be maximal among then-c.e. e-degrees, for 2 ≤ n ≤ ω. © 2003 Hebrew University.
Source Title: Israel Journal of Mathematics
URI: http://scholarbank.nus.edu.sg/handle/10635/104372
ISSN: 00212172
DOI: 10.1007/BF02785966
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.