Please use this identifier to cite or link to this item: https://doi.org/10.1090/S0002-9947-04-03722-5
Title: Stable branching rules for classical symmetric pairs
Authors: Howe, R.
Tan, E.-C. 
Willenbring, J.F.
Issue Date: Apr-2005
Citation: Howe, R., Tan, E.-C., Willenbring, J.F. (2005-04). Stable branching rules for classical symmetric pairs. Transactions of the American Mathematical Society 357 (4) : 1601-1626. ScholarBank@NUS Repository. https://doi.org/10.1090/S0002-9947-04-03722-5
Abstract: We approach the problem of obtaining branching rules from the point of view of dual reductive pairs. Specifically, we obtain a stable branching rule for each of 10 classical families of symmetric pairs. In each case, the branching multiplicities are expressed in terms of Littlewood-Richardson coefficients. Some of the formulas are classical and include, for example, Littlewood's restriction rule as a special case. ©2004 American Mathematical Society.
Source Title: Transactions of the American Mathematical Society
URI: http://scholarbank.nus.edu.sg/handle/10635/104192
ISSN: 00029947
DOI: 10.1090/S0002-9947-04-03722-5
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

44
checked on Jun 17, 2018

WEB OF SCIENCETM
Citations

40
checked on Jun 4, 2018

Page view(s)

15
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.