Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/103972
Title: | Principal Congruence Subgroups of the Hecke Groups | Authors: | Lang, M.-L. Lim, C.-H. Tan, S.-P. |
Keywords: | Principal congruence subgroups; Hecke groups | Issue Date: | Dec-2000 | Citation: | Lang, M.-L.,Lim, C.-H.,Tan, S.-P. (2000-12). Principal Congruence Subgroups of the Hecke Groups. Journal of Number Theory 85 (2) : 220-230. ScholarBank@NUS Repository. | Abstract: | Let q be an odd integer >3 and let Gq be the Hecke group associated to q. Let (τ) be a prime ideal of Z[λq] and G(q, τ) the principal congruence subgroup of Gq associated to τ. We give a formula for [Gq:G(q, τ)], the index of the principal congruence subgroup G(q, τ) in Gq. We also give formulae for the indices [G1(q, τ), G(q, τ)] and [G0(q, τ), G1(q, τ)]. Finally, we give a formula for the geometric invariants of G(q, τ) when q is a rational prime. © 2000 Academic Press. | Source Title: | Journal of Number Theory | URI: | http://scholarbank.nus.edu.sg/handle/10635/103972 | ISSN: | 0022314X |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.