Please use this identifier to cite or link to this item: https://doi.org/10.1007/s002000100074
Title: On the lattice structure of pseudorandom numbers generated over arbitrary finite fields
Authors: Niederreiter, H. 
Winterhof, A.
Keywords: Marsaglia's lattice test
Nonlinear method
Pseudorandom number generator
Issue Date: 2001
Citation: Niederreiter, H., Winterhof, A. (2001). On the lattice structure of pseudorandom numbers generated over arbitrary finite fields. Applicable Algebra in Engineering, Communications and Computing 12 (3) : 265-272. ScholarBank@NUS Repository. https://doi.org/10.1007/s002000100074
Abstract: Marsaglia's lattice test for congruential pseudorandom number generators modulo a prime is extended to a test for generators over arbitrary finite fields. A congruential generator η0, η1,..., generated by ηn = g(n), n = 0, 1,..., passes Marsaglia's s-dimensional lattice test if and only if s ≤ deg(g). It is investigated how far this condition holds true for polynomials over arbitrary finite fields Fq, particularly for polynomials of the form gd (x) = α(x + β)d + γ, α, β, γ ∈ Fq, α ≠ 0, 1 ≤ d ≤ q - 1.
Source Title: Applicable Algebra in Engineering, Communications and Computing
URI: http://scholarbank.nus.edu.sg/handle/10635/103810
ISSN: 09381279
DOI: 10.1007/s002000100074
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

12
checked on Aug 14, 2018

WEB OF SCIENCETM
Citations

13
checked on Jul 25, 2018

Page view(s)

17
checked on May 4, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.