Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jalgebra.2004.02.025
Title: On Rademacher's conjecture: Congruence subgroups of genus zero of the modular group
Authors: Chua, K.S.
Lang, M.L. 
Yang, Y.
Keywords: Congruence subgroups
Genus
Hauptmodul
Modular group
Issue Date: 1-Jul-2004
Citation: Chua, K.S., Lang, M.L., Yang, Y. (2004-07-01). On Rademacher's conjecture: Congruence subgroups of genus zero of the modular group. Journal of Algebra 277 (1) : 408-428. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jalgebra.2004.02.025
Abstract: We list all genus zero congruence subgroups of PSL2(ℤ). There are altogether 132 of them (up to conjugation in PSL2(Zdbl;)). Geometrical invariants (genus, v2, v3, number of cusps, index in PSL2(ℤ)), fundamental polygons, Farey symbol, and independent generators of all such groups are determined. Generators of the function fields associated to such groups are also determined (http://www.math.nus.edu.sg/~matlml/). © 2004 Elsevier Inc. All rights reserved.
Source Title: Journal of Algebra
URI: http://scholarbank.nus.edu.sg/handle/10635/103746
ISSN: 00218693
DOI: 10.1016/j.jalgebra.2004.02.025
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Oct 15, 2018

WEB OF SCIENCETM
Citations

5
checked on Oct 15, 2018

Page view(s)

36
checked on Oct 5, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.