Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/103643
Title: Normalizers of the congruence subgroups of the hecke group G5 II
Authors: Lang, M.-L. 
Tan, S.-P. 
Keywords: Congruence subgroups
Hecke groups
Issue Date: 2000
Citation: Lang, M.-L.,Tan, S.-P. (2000). Normalizers of the congruence subgroups of the hecke group G5 II. Proceedings of the American Mathematical Society 128 (8) : 2271-2280. ScholarBank@NUS Repository.
Abstract: Let λ = 2 cos(π/5). Let (τ) be an ideal of ℤ[λ] and let (τ0) be the maximal ideal of ℤ[λ] such that (τ0 2) ⊆ (τ). Then N(G0(τ)) ≤ G0(τ0). In particular, if τ is square free, then G0(τ) is self-normalized in PSL2(ℝ). ©2000 American Mathematical Society.
Source Title: Proceedings of the American Mathematical Society
URI: http://scholarbank.nus.edu.sg/handle/10635/103643
ISSN: 00029939
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

27
checked on Oct 12, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.