Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/103450
Title: Iterative computation of derivatives of repeated eigenvalues and the corresponding eigenvectors
Authors: Andrew, A.L.
Tan, R.C.E. 
Keywords: Close eigenvalues
Eigenvalue and eigenvector sensitivities
Multiple eigenvalues
Simultaneous iteration
Issue Date: 2000
Source: Andrew, A.L.,Tan, R.C.E. (2000). Iterative computation of derivatives of repeated eigenvalues and the corresponding eigenvectors. Numerical Linear Algebra with Applications 7 (4) : 151-167. ScholarBank@NUS Repository.
Abstract: Recently the authors proposed a simultaneous iteration algorithm for the computation of the partial derivatives of repeated eigenvalues and the corresponding eigenvectors of matrices depending on several real variables. This paper analyses the properties of that algorithm and extends it in several ways. The previous requirement that the repeated eigenvalue be dominant is relaxed, and the new generalized algorithm given here allows the simultaneous treatment of simple and repeated eigenvalues. Methods for accelerating convergence are examined. Numerical results support our theoretical analysis. Copyright © 2000 John Wiley & Sons, Ltd.
Source Title: Numerical Linear Algebra with Applications
URI: http://scholarbank.nus.edu.sg/handle/10635/103450
ISSN: 10705325
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

28
checked on Feb 15, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.