Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.disc.2013.06.001
Title: A Kruskal-Katona type theorem for integer partitions
Authors: Ku, C.Y. 
Wong, K.B.
Keywords: Kruskal-Katona theorem
Macaulay posets
Issue Date: 2013
Citation: Ku, C.Y., Wong, K.B. (2013). A Kruskal-Katona type theorem for integer partitions. Discrete Mathematics 313 (20) : 2239-2246. ScholarBank@NUS Repository. https://doi.org/10.1016/j.disc.2013.06.001
Abstract: Let N be the set of positive integers, and let P(n) {equation presented} be the set of (ordered) partitions of n. We show that there exist a rank function and orderings ≤c and such that the ranked poset (P(n),≤c) is Macaulay. © 2013 Elsevier B.V. All rights reserved.
Source Title: Discrete Mathematics
URI: http://scholarbank.nus.edu.sg/handle/10635/102664
ISSN: 0012365X
DOI: 10.1016/j.disc.2013.06.001
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.