Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.disc.2013.06.001
Title: A Kruskal-Katona type theorem for integer partitions
Authors: Ku, C.Y. 
Wong, K.B.
Keywords: Kruskal-Katona theorem
Macaulay posets
Issue Date: 2013
Source: Ku, C.Y., Wong, K.B. (2013). A Kruskal-Katona type theorem for integer partitions. Discrete Mathematics 313 (20) : 2239-2246. ScholarBank@NUS Repository. https://doi.org/10.1016/j.disc.2013.06.001
Abstract: Let N be the set of positive integers, and let P(n) {equation presented} be the set of (ordered) partitions of n. We show that there exist a rank function and orderings ≤c and such that the ranked poset (P(n),≤c) is Macaulay. © 2013 Elsevier B.V. All rights reserved.
Source Title: Discrete Mathematics
URI: http://scholarbank.nus.edu.sg/handle/10635/102664
ISSN: 0012365X
DOI: 10.1016/j.disc.2013.06.001
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

22
checked on Feb 19, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.