Wu, X.H.Panda, S.K.Xu, J.X.ELECTRICAL & COMPUTER ENGINEERING2014-06-172014-06-172010Wu, X.H., Panda, S.K., Xu, J.X. (2010). Design of a plug-in repetitive control scheme for eliminating supply-side current harmonics of three-phase pwm boost rectifiers under generalized supply voltage conditions. IEEE Transactions on Power Electronics 25 (7) : 1800-1810. ScholarBank@NUS Repository. https://doi.org/10.1109/TPEL.2010.204230408858993https://scholarbank.nus.edu.sg/handle/10635/55569This paper presents a digital repetitive control (RC) scheme to minimize the even-order harmonics at the dc link voltage and odd-order harmonics in the line-side currents under distorted and unbalanced supply voltage conditions. The proposed current control scheme consists of a conventional PI and a plug-in repetitive controller. On the basis of the mathematical model of the three-phase pulsewidth-modulated (PWM) boost rectifier under the generalized supply voltage conditions, the control task is divided into: 1) dc-link voltage harmonics control and 2) line-side current harmonics control. In the voltage harmonics control scheme, a reference current calculation algorithm has been derived accordingly to ensure that the dc link voltage is maintained constant at the demanded value and the supply-side power factor is kept close to unity. In the line-side current harmonics control scheme, a plug-in repetitive controller is designed to achieve low total harmonic distortion (THD) line-side currents of the three-phase PWM boost rectifier. The experimental test results obtained from a 1.6-kVA laboratory-based PWM rectifier confirm that the proposed control scheme can reduce the line-side current THD from 16.63 to 4.70, and improve the dc-link voltage tracking accuracy substantially over the conventional PI-based controller. © 2011 IEEE.AC-DC power conversionpulsewidth-modulated (PWM) power convertersrectifiersrepetitive control (RC)Design of a plug-in repetitive control scheme for eliminating supply-side current harmonics of three-phase pwm boost rectifiers under generalized supply voltage conditionsArticle000278997800004