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Noise is a fundamental challenge for sensors deployed in daily environments for ambient sensing, health
monitoring, and wireless networking. Current strategies for noise mitigation rely primarily on reducing or
removing noise. Here, we introduce stochastic exceptional points and show the utility to reverse the
detrimental effect of noise. The stochastic process theory illustrates that the stochastic exceptional points
manifest as fluctuating sensory thresholds that give rise to stochastic resonance, a counterintuitive
phenomenon in which the added noise increases the system’s ability to detect weak signals. Demon-
strations using a wearable wireless sensor show that the stochastic exceptional points lead to more accurate
tracking of a person’s vital signs during exercise. Our results may lead to a distinct class of sensors that
overcome and are enhanced by ambient noise for applications ranging from healthcare to the internet of
things.
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Introduction.—Exceptional points (EP) are branch point
singularities that have recently emerged as a way to
engineer the response of open physical systems—that is,
systems which do not obey conservation laws because they
exchange energy with their environments [1–3]. They
correspond to points in the system’s parameter space at
which two or more eigenfrequencies and eigenvectors
simultaneously coalesce [4–7]. The presence of an EP
can have a dramatic effect on the response of the system,
leading to exotic phenomena such as unidirectional invis-
ibility [8], topological chirality [9], and non-reciprocal
phase transitions [10]. Recently, the bifurcation response
around an EP has been used to amplify the sensitivity of
sensors based on photonic, acoustic, and electronic reso-
nances [11–17]. Noise, however, limits the ability to
resolve the parameter changes at the EP, and whether EP
can lead to enhanced sensing performance in the presence
of noise remains unclear [18–21].
Most approach to noise mitigation—including spectral

filtering, artifact removal, and active cancellation—aim to
reduce or remove noise [22]. In contrast, many biological
sensory systems can benefit from noise through stochastic
resonance (SR) [23,24], a counterintuitive phenomenon in

which the ability of a nonlinear system todetect aweak signal
is enhanced by adding noise. SR has been observed in a
variety of nonlinear physical systems, such as optomechan-
ical resonators [25], photonic semiconductors [26], and
bistable electronic circuits [27].However, its use overcoming
noise in a broader class of sensing systems that operate in
daily environments has not yet been demonstrated.
Here, we introduce stochastic EPs and show that the

detrimental effect of noise can be reversed via SR. The
stochastic EPs is implemented by a sensor that consists of a
parity-time (PT) symmetric arrangement of two coupled
gain-loss resonators with additional noise added to an EP
[Fig. 1(a)]. The theory of stochastic process reveals that,
different from other EP sensors that use the EP to enhance
the frequency response [11–21], the stochastic EPs act as
fluctuating sensory thresholds that output random PT-phase
transitions under a weak periodic input [Fig. 1(b)]. This
process gives raise to SR—adding noise counterintui-
tively increases the sensor’s signal-to-noise ratio (SNR)
[Fig. 1(c)]. Demonstrations using a wearable sensor show
that stochastic EPs arising from physiological motion
overcome the negative effect of noise, resulting in more
accurate tracking of a person’s vital signs.
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Theory.—We show how the presence of stochastic EPs
leads to SR and noise-assisted sensing behavior. We
consider a pair of PT-symmetric resonators with resonant
frequencies ωn (n ¼ 1, 2). The first resonator is active with
a gain of −γ and the second is passive with a balanced
loss γ and a coupling strength κ. Physical sensors can be
interfaced with the system and introduce equivalent per-
turbation of γ or κ to the PT-symmetric resonators. The
response of the sensor is characterized by the system’s two
eigenfrequencies ωþ and ω−, which can be calculated by
the coupled mode equations [28]:

�
iðω1 − ωÞ þ γ −iκ

−iκ iðω2 − ωÞ − γ

��
ψ1

ψ2

�
¼ 0; ð1Þ

where ψn are the normalized amplitudes of the resonators.
Above equation leads to two complex-valued solutions of
ωþ and ω−, which typically evolve smoothly as a function
of the system parameters. In these regions of the parameter
space, the sensor deteriorates due to the noise because its
response is approximately linear for small perturbations of
γ or κ.
At the EP where both complex-valued solutions and their

corresponding eigenvectors coalesce in parameter space
ω1 ¼ ω2 and κ ¼ γ, a small perturbation can abruptly
induce a phase transition and result in a strongly nonlinear
response [Fig. 2(a)] [29]. Taking κ as an example of
perturbation, when κ is allowed to vary from the EP, the
response is given by the real part of eigenfrequency
ω� ¼ ω1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

p
, which has two regions correspond-

ing to the two phases of the system. In the region κ ≤ γ
(broken-PT phase), the real part of the eigenfrequencies do
not depend on κ and the system is insensitive to the input.
However, when the input coupling is increased to κ > γ
(exact-PT phase), the real part of the eigenfrequencies
abruptly bifurcate with splitting distance dependent on κ

and the system acquires a sensitivity to the input. The EP
thus provides a sensory threshold below which the input
signal does not evoke an output response.
We now consider stochastic EPs and reveal that the

detrimental noise can be reversed using the theory of
stochastic process. We consider an input signal of time-
varying coupling κðtÞ decomposed as κðtÞ¼ κ0þ κs sinðνtÞ,
where κ0 is the initial coupling strength, κs the amplitude of
the sinusoidal input, and ν the input signal rate. We make
adiabatic approximations that the noise occurs at timescales
much longer than the period of the resonances—a quasi-
static condition where the system is always at the steady
resonance. To obtain SR, we initially bias the coupled
strength below the sensory threshold κ0 þ κs < γ and we
add white noise ξðtÞ with standard deviation σ to the EP.
For the instantaneous value of the input κðtÞ, the eigen-
frequencies at time t are therefore given by the solutions
taken to be the upper eigenfrequency branch:

xðtÞ ¼ ω1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½κðtÞ þ ξðtÞ�2 − γ2

q
: ð2Þ

We use Monte Carlo simulation [29] to illustrate an
example of Eq. (2). As shown in Fig. 2(b), although the

FIG. 2. Theory of stochastic EPs. (a) Surface plot of the
eigenfrequencies ω� as a function of κ=γ and detuning
ω1 − ω2. The EP is located at κ ¼ γ and ω1 ¼ ω2. κ, coupling
rate; γ, loss rate; ωn, resonant frequencies. (b) Example of the
system response. The input κsðtÞ is a sinusoidal signal. The
stochastic EPs have white noise ξðtÞ with standard deviation σ.
The EP is initially set to κ ¼ γ ¼ 0.2 and the system is biased at
κ0 ¼ 0.175. The response displays a series of pulses of noise-
assisted PT-phase transitions, i.e., SR at stochastic EPs. (c) SNR
as a function of σ. The system reaches a maximal SNR as
indicated by the star. The dashed curve shows the theory fit by
Eq. (3). (d),(e) SNR as a function of σ and γ when the resonant
frequencies are matched ω1 ¼ ω2 (d) and when they are slightly
detuned ω1 − ω2 ¼ 5 × 10−4 (e). The dashed black line shows
the evolution of SR.

FIG. 1. Noise-assisted sensing at stochastic exceptional points
(EPs). (a) Illustration of the system comprising of a pair of
coupled resonators, one with gain and the other with loss. The EP
separates two phases of the system, one which is insensitive to the
input and the other which is sensitive. κ, normalized coupling rate
of two resonances; γ, loss rate; ω�, eigenfrequencies. (b) Illus-
tration of noise-assisted sensing at the stochastic EPs. Consid-
ering a periodic input in the weak coupling (i.e., broken PT
phase), stochastic EPs assist the input to randomly cross the
threshold, resulting in a series of pulses of random PT-phase
transitions. (c) Signature of stochastic resonance. The addition of
a certain level of noise optimizes the signal-to-noise ratio.
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amplitude of the input is by itself insufficient to evoke an
output response, the presence of stochastic EPs enables the
input signal to intermittently overcome the sensory thresh-
old, resulting in an output—a series of pulses of random
PT-phase transitions—that has a spectral peak at the signal
rate ν.
The effect of stochastic EPs can be quantified by

calculating the SNR of the output. Because of the stochastic
process, we can only statistically characterize the SNR of
averaged quantity of many PT-phase transitions. From the
output series of pulses xðtÞ, we start by calculating the
autocorrelation functionCðτÞ ¼ hxðtÞxðtþ τÞi, where h� � �i
denotes an ensemble average. The power spectral density of
the output is directly given by Fourier transform of CðτÞ,
and the SNR is given by SðνÞ=N0, where SðνÞ is the power
spectrum density at the signal rate ν and N0 is the
background noise [29]. Monte Carlo simulation results
in Fig. 2(c) show that the SNR increases with σ up to a
critical value, and then gradually decreases. The effect of
stochastic EPs leads to SR: the SNR is maximized at a
nonzero noise level σ.
To obtain an analytical solution of the SNR, we further

assume that the output is denoted as xðtÞ ¼ P
Fðt − tKÞ,

where a single pulse FðtÞ with constant height h and
width Δt occurs at random time tK with a certain rate rðtÞ.
The rate is rðtÞ ¼ r0 þ

P∞
n¼1 rn sinðnνtÞ, where r0 is a con-

stant rate induced by noise, and rn is the rate at n th har-
monic frequency. Repeating the above calculations, we can
obtain the power spectrum SðΩÞ ¼ 2ðhΔtÞ2r0 þ ð4=πÞ×
ðhΔtÞ2r20δðΩÞ þ ð2=πÞðhΔtÞ2P∞

n¼1 r
2
nδðΩ − nνÞ, which

consists of a broadband noise background and a series
of pulses at the signal frequency and its harmonics [24].
The SNR of the first harmonic signal is then approximated
as r21=ðπr0Þ.
To link the noise intensity σ with SNR, we consider the

Kramers-type formula rðtÞ¼ exp½−ðU=σÞð1−κs sinΩstÞ�,
where U ¼ γ − κ0 is the barrier to cross the threshold [24].
The SNR can be analytically obtained by repeating the
above calculation [29]:

SNR ¼ U2κ2s
σ2

exp

�
−U

σ

�
: ð3Þ

The analytical solution shows that the SNR has a maximum
value under the optimal noise level σSR ¼ U=2. Our
Monte Carlo simulation results are well fit by Eq. (3) as
shown in Fig. 2(c).
We further show that, when the loss rate γ is increased,

the optimal noise level shifts to the right [Fig. 2(d)], which
enables the system to be reconfigured for different magni-
tudes of the input signal and noise. The noise-enhanced
SNR is also retained when the resonators are slightly
detuned ω1 ≠ ω2. The detuning causes the sensory thresh-
old to become a “soft” threshold below which the system’s
response is significantly damped but nonzero. The SNR

reaches a local maximum at a noise level close to the
optimum for the matched resonance case [29]. The sto-
chastic EPs lead to SR for a wide range of system
parameters, input waveforms, and noise distributions [29].
Experiments.—We implement the stochastic EPs in a

sensor that consists of a pair of inductor-capacitor (LC)
resonators [Fig. 3(a)]. To achieve a wearable form factor,
the inductors (L1 ¼ L2 ¼ 5.5 μH) are fabricated by com-
puter-controlled embroidery of Ag conductive thread on a
cotton textile substrate. Gain is introduced to the active
resonator by a negative impedance converter, while the loss
rate is controlled in the passive resonator by a parallel
resistor R2. The output signal can therefore be directly
obtained by measuring the instantaneous oscillation fre-
quency of the circuit with a far-field probe without the need
for a driving signal. The resonant frequency of the passive
resonator is set by a fixed capacitor C2, while the active
resonator is configured with a digitally controlled capacitor
(C1 ¼ 12.5 to 194 pF with step size of 0.355 pF) to allow
fine-tuning of the resonant frequency.
We characterize the sensing performance during robotic

control of our sensor [Fig. 3(b)]. The sensor measures a
coherent mechanical signal through the changes in the
coupling κ between the passive and active resonators. The
input signal is used to control the displacement d between
the two coils, and hence the coupling rate κ, via a motorized
linear stage. The circuit yields a coupling threshold of at

FIG. 3. Sensor characterization. (a) Sensor controlled by a
linear stage. The system response has a sensory threshold at EP
located at d ¼ 13.74 mm. (b) Response of a sinusoidal input
under the stochastic EPs. The input signal has a sub-threshold
amplitude of 1 mm while the noise has a standard deviation of
σ ¼ 0.5 mm. (c) SNR as a function of R2 and σ. (d) SNR as a
function of σ for the values of R2 indicated by the dashed lines in
(c) and the comparison of sensors with and without stochastic
EPs. The reference sensor consists of directly measuring the
resonance with a network analyzer. Solid lines show theory fit by
Eq. (3). Error bars show mean �s:d: (n ¼ 3 technical trials).
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displacement d ¼ 13.74 mm above which the coupling κ
falls below the sensory threshold and the system does not
respond. This threshold can be increased or decreased by
adjusting the resistance R2, which allows the system to be
optimized for different levels of expected noise [29].
Figure 3(c) shows the response of the system to a

sinusoidal input signal of 0.09 Hz. The sinusoidal signal
has an amplitude of 1 mm, which is less than the 2 mm gap
between the initial position and the displacement threshold.
However, the stochastic EPs with Gaussian noise and
standard deviation σ ¼ 0.5 mm results in SR—an output
with a sharp spectral peak at 0.09 Hz, which has a measured
SNR of 18 dB. Because of the tunable EP, the SNR
increases with the noise level and reaches a local maximum
for σ between 0.45 and 0.7 mm. We further compared the
performance of the sensor to an analogous setup that does
not have an EP [28], in which the spectral response is
directly measured by driving it with a continuous-wave
signal and observing the reflected signal. Figure 3(d) shows
that this approach, as expected, yields a SNR curve that
decreases monotonically with σ. In contrast, our stochastic
EP sensor is enhanced by the noise at around σ ¼ 0.6 mm
at which the SNR exceeds that of the standard approach
by 9 dB. More demonstrations of optical sensing at sto-
chastic exceptional points are shown in the Supplemental
Material [29].
To achieve a highly accurate respiration sensor with

noise robustness, we evaluate the utility of the stochastic EP
sensor for respiration monitoring on a human subject
undergoing exercise. The sensor detects a person’s respi-
ratory rate (RR) through the motion-induced changes in the
coupling strength between the passive resonator attached
on skin and active resonators worn on cloth. We conduct a
physiological experiment in which the subject runs on a
treadmill with speeds increased in a stepwise fashion from
0 to 5.5 km=h and with a 3 min duration for each speed.
The reference respiratory rate is obtained using a respirator
mask connected to a metabolic measurement system. Our
sensor is flexible and stretchable, which is unobtrusively
worn on the chest and placed on the clothing [29]. The
parameters of the active resonator can be wirelessly
programmed, and the output signal is measured in the
far-field using a signal analyzer [29]. Figure 4(a) shows the
sensor and reference measurements over an 18-min exer-
cise protocol. As expected, the noise at the output of the
sensor increases with motion speeds, which leads to
stochastic EPs. Despite variations in the noise level, the
RR (17–33 bpm) obtained from our sensor is in close
agreement with the reference over the entire duration of the
experiment.
To quantify the sensor’s performance, we calculate the

SNR of the output signal for each 30-sec window. Because
of the SR at stochastic EPs, Fig. 4(b) shows that the SNR
increases with the estimated noise level such that the SNR

obtained at 4.5 km=h is 13 dB higher than when the subject
is at 1.5 km=h. Representative waveforms from the speeds
of 1.5, 4.5, and 5.5 km=h epochs suggest that the enhance-
ment results from the stochastic EPs—noise assists the
signal in coherently overcoming the sensory threshold
[Fig. 4(c)]. This enhancement in the SNR leads to improved
accuracy of RR monitoring, as shown by the Bland-Altman
plots in Fig. 4(d). The standard deviation of the difference
between the RR estimated by our sensor and the gold
standard decreases from 0.52 bpm at 1.5 km=h to 0.23 bpm
at 4.5 km=h. In contrast, the standard method is unable to
detect RR due to the physiological noise unless the subject
is stationary [29].
Discussion.—We have introduced the stochastic EPs and

demonstrated reversal of the detrimental noise in sensing
through SR. Our approach provides a general mechanism to
control signal-noise interactions across a wide range of
sensing systems. Since our theoretical analysis is based on
statistical characterizations under the assumption of adia-
batic approximations, our stochastic EP sensors require
periodic inputs in low frequencies. Demonstrations in
respiratory sensing show that this effect could be used to
enhance the physiological monitoring for healthcare in
daily life. Because SR is retained even when the input
signal is aperiodic [29], our sensor can in principle be

FIG. 4. Ambient-noise-enhanced wireless sensing at stochastic
EPs. (a) Experimental results for an 18-min exercise protocol
with treadmill speeds of 0, 1.5, 2.5, 3.5, 4.5, 5.5 km=h for each
3 min, respectively. f, sensor resonant frequency; RR, respiratory
rate. (b) SNR optimized by additional noise during physiological
exercise. Data points correspond to 30 sec at different exercise
speeds. (c) Representative sensor output waveforms for motion
speeds of 1.5, 4.5, and 5.5 km=h (upper row), and deviation of
the RR measured by the sensor compared to the reference (Bland-
Altman plot, lower row). Solid lines show mean and dashed lines
show �2 standard deviation (SD).
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adopted for other signals in the Internet of Things, such as
industrial pressure sensors, environmental monitoring of
temperature and humidity, and sensors for light or acoustic
communications. Our results demonstrate a new effect of
beneficial noise [35], link the fields of non-Hermitian
physics and signal processing, and pave the way for a
new class of sensors that are enhanced by the noise present
in their environments.

The data that support the plots within this Letter and
other findings of this study are available from the corre-
sponding author upon reasonable request. Pseudocode for
the numerical calculation and benchtop experiment is
provided in Supplemental Material [29].
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