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A B S T R A C T

Purpose: The benefit of using individual risk prediction tools to identify high-risk individuals for
breast cancer (BC) screening is uncertain, despite the personalized approach of risk-based
screening.
Methods: We studied the overlap of predicted high-risk individuals among 246,142 women
enrolled in the UK Biobank. Risk predictors assessed include the Gail model (Gail), BC
family history (FH, binary), BC polygenic risk score (PRS), and presence of loss-of-function
(LoF) variants in BC predisposition genes. Youden J-index was used to select optimal
thresholds for defining high-risk.
Results: In total, 147,399 were considered at high risk for developing BC within the next 2 years
by at least 1 of the 4 risk prediction tools examined (Gail2-year > 0.5%: 47%, PRS2-yea r > 0.7%:
30%, FH: 6%, and LoF: 1%); 92,851 (38%) were flagged by only 1 risk predictor. The overlap
between individuals flagged as high-risk because of genetic (PRS) and Gail model risk factors
was 30%. The best-performing combinatorial model comprises a union of high-risk women
identified by PRS, FH, and, LoF (AUC2-year [95% CI]: 62.2 [60.8 to 63.6]). Assigning
individual weights to each risk prediction tool increased discriminatory ability.
Conclusion: Risk-based BC screening may require a multipronged approach that includes PRS,
predisposition genes, FH, and other recognized risk factors.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY-NC-ND license
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Introduction

Breast cancer (BC) accounts for 15.5% of the 4,429,323
cancer deaths observed globally among women.1 Serial
mammography screening efficiently identifies early-stage
BC and reduces BC mortality.2-6 Population-based
mammography screening is usually targeted at women
aged between 50 and 69 years.7 However, more than half of
the 2,261,419 BC cases diagnosed worldwide fall outside
this age group (<50 years: 29.4%; ≥70 years: 22.4%)
(GLOBOCAN, accessed September 19, 2022). In addition,
inconsistent benefits-to-harm ratio limits the use of
mammography screening in women outside the at-risk age
group.

BC screening should ideally be performed when the risk
of the disease is high enough to offset the harms of over-
diagnosis and overtreatment.2,8,9 Women below the age of
50 have a lower probability of developing BC than older
women, but the forms of BC that do so are frequently more
aggressive and have a worse prognosis.10 Additionally,
younger women are expected to live longer and have fewer
comorbidities.10 In contrast, older women (≥70 years) suffer
from more comorbidities, casting doubts on the efficacy of
mammography screening in reducing mortality. In addition,
there are doubts regarding the efficacy of mammography
screening among older women in reducing mortality
because of a higher burden from noncancer comorbid-
ities.11-13 Furthermore, the risk of overdiagnosis and un-
necessary treatment may compromise their quality of life
and physical function.14 “For whom does screening benefit”
thus becomes an important question. The risk-benefit ratio
for screening mammography for women outside the current
target risk group may be tilted by personalized risk assess-
ments and lead to better patient outcomes.10

The most efficient method to implement risk-based
screening for BC is still being investigated:

• A higher risk of BC exists in those who have a family
history (FH) of the disease that is likely brought on by
genetic factors common lifestyle variables or other
shared family traits.15-17

• The Gail model, which incorporates classic BC risk
factors including age, age at the first occurrence of
menstruation, age at first child, number of breast bi-
opsies, history of atypical hyperplasia, and number of
immediate family members with BC, is widely used
and validated in many populations of different
ancestry.18-23 However, it should be noted that many
other BC prediction models, such as BOADICEA,
Tyrer-Cuzick, and BRCAPRO have been
developed.24,25

• Studies have argued that mammographic density—
ascertained from the appearance of the breast tissue on
mammograms—is more strongly associated with BC
risk than risk factors in the Gail model.26-29

• Individual risk of developing BC is caused by a
particular genetic vulnerability (such rare loss-of-
function [LoF] variants in BRCA1 or BRCA2).30-34

Large consortia efforts have identified other clini-
cally useful BC predisposition genes (ATM, CHEK2,
PALB2, BARD1, RAD51C, RAD51D, and TP53).35

• Polygenic risk scores (PRS) that sum up the effects of
multiple common variants associated with BC have
been implemented in pilot precision health initiatives
that stratify individuals by their disease risk.36-45

With the continuous development and refinement of BC
risk assessment tools, “How much does genetics add?”
becomes of interest. Combining genetic data with standard
risk instruments meaningfully enhances risk stratification
and improves discriminatory value in mammography
screening programs.46,47 The collective role that various BC
risk predictors play in disease prediction has also been
previously studied. Hassanin et al examined FH, PRS, and
LoF variants in BC predisposition genes, and concluded
that they jointly improved risk stratification for breast and
prostate cancers.48 However, the extent of overlap between
the high-risk individuals identified by different tools is
unclear. Here, we assessed the proportion of women iden-
tified as at high risk of developing BC as ascertained by
different BC risk assessment tools, in 246,142 women from
the UK Biobank data set. In addition, we evaluated the
proportion of high-risk individuals who eventually devel-
oped the malignancy.
Materials and Methods

Study population

The UK Biobank is a publicly available scientific database
and research tool with comprehensive genetic and health
data from about 500,000 individuals in the United
Kingdom.49 Participants were recruited between 2006 and
2010 via mail invitation (5% response rate). Aged between
40 and 70 years, enrolled with a general practitioner, and
residing within 20 miles of 1 of 22 evaluation centers in
England, Scotland, and Wales were requirements for par-
ticipants. Our cohort was restricted to 264,741 female par-
ticipants (application 86846) (Supplemental Figure 1).

BC polygenic risk score (PRS)

Genome-wide genetic data are available for 487,201 UK
Biobank participants (Data-Field 22828). The UK Biobank
genotyping project, quality control, imputation, and related
processes have been previously described. (Supplemental
Material) (Bycroft C, Freeman C, Petkova D, et al.
Genome-wide genetic data on ~500,000 UK Biobank par-
ticipants. bioRxiv. 2017:166298. https://doi.org/10.11
01/166298). The imputed genotypes are aligned to the +
strand of the reference and the positions are in GRCh37
coordinates. The list of the 313 SNPs and associated weights
included in the BC PRS is given in Supplemental Table 1.36

https://doi.org/10.1101/166298
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LoF variants in 9 BC risk genes

The targeted sequencing analyses using population-level
exome OQFE variants (PLINK format - final release,
ukb23158_c*_b0_v1) were conducted on the Research
Analysis Platform (https://ukbiobank.dnanexus.com)
(Supplemental Material).50 Poor-quality variants were
excluded. The quality control criteria require that at least
90% of all genotypes for a given variant—independent of
variant allele zygosity—have a read depth of at least 10 (ie,
depth ≥ 10). Missense and synonymous variants (annotated
as missense (0/5), missense (5/5), missense (≥1/5), or syn-
onymous) were excluded. LoF variants (n = 795) in 9 BC
risk genes (ATM, n = 222; BRCA1, n = 115; BRCA2, n =
179; CHEK2, n = 60; PALB2, n = 85; BARD1, n = 49;
RAD51C, n = 23; RAD51D, n = 47; or TP53, n = 15) were
extracted.35 The maximum minor allele frequency for LoF
variants within the UK Biobank data set was set at 0.01. The
resulting exome sequencing data set included 508 LoF
variants in 254,635 females.

Non-genetic risk factors

Demographic and reproductive risk factors were obtained
from the first instance: age at recruitment (Data-Field:
21022), race (Data-Field: 21000), age at menarche (Data-
Field: 2714), parity (Data-Field: 2734), age at first childbirth
(Data-Fields: 2754 and 3872), FH of BC (Data-Fields:
20110 for mother and 20111 for siblings), and menopausal
status (Data-Field: 2724). FH of BC takes values 0 (no FH),
1 (where the individual’s mother (Data-Fields: 20110) or at
least 1 sibling (Data-Fields: 20111) had BC), or 2 (mother
and at least 1 sibling had BC). Information on ever BC
screening (Data-Field: 2674) was also retrieved.

BC case ascertainment

Invasive BC was determined using the 9th (174*) and 10th
(C50*) versions of the International Classification of Dis-
eases (Data-Fields 40013 “174 Malignant neoplasm of fe-
male breast” and 40006 “Malignant neoplasm of breast,”
respectively). Age at cancer diagnosis (Data-Fields: 20007
and 40008) was used to determine if the cancer diagnosis
was before the age of 80. A total of 26 BCs were diagnosed
at age 80 and above. Our focus is on risk-based BC
screening for earlier diagnosis and treatment, the late age at
diagnosis may be a case for overdiagnosis where the harms
of treatment may outweigh the benefits; hence, these cases
were considered noncase in our analysis. In situ BC cases
were included as noncases.

A total of 253,953 females had information on both PRS
and LoF variants (Supplemental Figure 1). The UK Biobank
performs regular linkages to national cancer registries as a
passive follow-up to capture cancer diagnosis. Censoring
dates (dates estimated by the UK Biobank that information
received from data providers is mostly complete) for
National Health Services Digital and National Records of
Scotland, National Health Services Central Register are 29
February 2020, and 31 January 2021, respectively. Prevalent
cases refer to cancer diagnoses made before enrollment in
the UK Biobank study (before the baseline assessment).
Only the prevalent cancer is considered if a person was
diagnosed with it both before and after baseline. If there
were multiple diagnosis dates for a certain malignancy, the
earliest date is used. If a participant was diagnosed with
multiple cancers at the earliest date, each cancer type is
separately counted. Because this analysis is aimed at pre-
dicting the risk of BC development among women without a
previous BC diagnosis, women whose age at recruitment
(Data-Fields: 21022) were older than their age at cancer
diagnosis (ie, prevalent cases) (n = 7811) were excluded.
The resulting analytical cohort consisted of 246,142 fe-
males, with 7620 incident cases of BC (the latest case was
diagnosed in 2020).
Statistical analysis

Associations between risk factors of interest and invasive
BC diagnosis before age 80 years were tested using χ2 test
for categorical variables and Kruskal-Wallis test for
continuous variables.

Our outcomes of interest are invasive BC diagnosis
within 2, 5, and 10 years post-study entry. Two-year abso-
lute risks were examined because it was opined previously
that “a risk model for effective screening should be designed
to assess the risk of BC in the interval between the just-
performed screen and the next scheduled screen to iden-
tify women who need supplemental screening.”51 For each
period of interest, the corresponding x-year absolute risk
(2-, 5-, and 10-year) was computed.

The individual’s x-year absolute risk (2-year, 5-year, and
10-year) was predicted using the package (BCRA in R) for
the Gail model.18,52 The method to obtain the x-year abso-
lute risk computed from PRS is described previously.37 BC
incidence rates from 2011 to 2015, and mortality rates of
2016, were used in the PRS absolute risk calculation.53,54

The distributions of x-year absolute risks predicted by
PRS and the Gail model are illustrated in Supplemental
Figure 2.

To our knowledge, there is no consensus on the threshold
to determine high-risk women based on the x-year absolute
risks computed from PRS. We selected the threshold based
on the highest Youden J-Index (pROC package in R).55,56

This threshold optimization was repeated for the x-year
absolute risks computed from the Gail model. If a woman
was censored because of death before the end of the pre-
diction period (ie, x-year) and before getting BC, she was
considered a noncase in the logistic regression. Among the
noncases, 403 (0.1% of 244,933 noncases) died within 2
years from recruitment, 2164 (0.9% of 242,882) died within
5 years, and 7001 (2.9% of 239,516) died within 10 years.
FH of BC was treated as a binary variable (FH, yes or no)

https://ukbiobank.dnanexus.com
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when used as a risk predictor on its own; in the Gail model,
values 0, 1, or 2+ were adopted. Women with predicted LoF
pathogenic variants in at least 1 of the 9 BC predisposition
genes (ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2,
RAD51D, RAD51C, and TP53) were considered high risk.

The women identified to be at high risk of developing BC
according to the 4 risk prediction tools (PRS, Gail, FH, and
LoF) were represented in a Venn diagram to illustrate the
extent of overlap of at-risk individuals. The discriminatory
ability of different risk prediction tools was assessed as
single predictors and in combinations (union of high-risk
women identified) by computing area under the receiver
operating curve (AUC). The backward stepwise logistic
regression analysis (R function step()) was used to examine
the relations (beta coefficients) of the 4 risk prediction tools
on BC risk (ie, the assigned weights of each prediction tool
was the beta coefficients of the logistic model)
(Supplemental Material).

To understand the absolute risk of developing BC in the
different risk groups (low or high), we conducted time-to-
event analyses using Cox proportional hazards models.
Follow-up time was defined as the time between recruitment
and the year of BC diagnosis, death, or the latest linkage year
(2020), whichever comes earlier. Women were identified as
at high risk based on the full model (PRS, Gail, FH, or LoF)
and the model excluding the Gail model (PRS, FH, and LoF).
The threshold selected was based on the highest Youden J-
Index in the logistic regression model. Kaplan-Meier curves
were plotted to observe the change in the proportion of
women developing BC in the different risk groups.

R version 4.0.3 was used in all analyses.
Results

Study population characteristics

We studied 246,142 women without BC at study entry. The
median age was 56 years (interquartile range: 50 to 63)
(Table 1). The majority (n = 232,118, 94%) were of White
background, were menopausal at study entry (n = 147,683,
60%), and attended BC screening (n = 194,441, 79%). As
of 2020, 3% of the study population (n = 7620) developed
invasive BC. The median age at diagnosis was 63 years
(interquartile range: 57 to 69). Differences in the distribution
of risk factors (age at menarche, age at first live birth, and
number of children) by case status were small but statisti-
cally significant because of the large sample size (Table 1).

Optimal thresholds for the definition of high risk

The most optimal Youden J-Index was achieved with ab-
solute risk cutoffs of 0.7% (PRS2-year AUC [95% CI]: 65.1
[63.6 to 66.7]) and 0.5% (Gail2-year AUC [95%CI]: 59.3
[57.7 to 60.9]). Supplemental Figure 3 summarizes the
corresponding AUC values when considering 2-, 5-, and 10-
years. The most optimal cutoffs were used for subsequent
analyses.

Overlap of high-risk individuals identified by
different BC risk assessment tools

The proportion of women flagged as high risk by
Gail2-year>0.5%, PRS2-year>0.7%, FH, and LoF were 47%
(n = 115,986), 30% (n = 73,775), 6% (n = 15,770), and 1%
(n = 3005), respectively (Figure 1). Supplemental Figure 4
shows corresponding Venn diagrams for 5-year and 10-year.
Thirty-eight percent of the 246,142 women in the
study were considered to be at high-risk by only 1 risk
prediction tool (PRS2-year>0.7% unique individuals = 28,630,
Gail2-year>0.5% unique individuals = 61,911, FH unique
individuals = 1142, and LoF unique individuals = 1168).

Seventy-nine percent of the 1209 BC cases that developed
within 2 years were identified to be at high risk by at least 1 of
the 4 BC predictors examined. Using a 2-year absolute risk
cutoff of 0.5% and 0.7%, the Gail model and PRS identified
60% (n = 728) and 52% (n = 632) of the cases, respectively.
FH made up 12% (n = 145) of the BC cases that developed
within the next 2 years of assessment; women with LoF var-
iants made up less than 4% (n = 44). Although LoF variants
are rare in the population (nhigh-risk, 10-year projection = 3005),
more individuals develop BCs (n = 192, 6%) compared with
the other 3 risk predictors (5014 BCs in 148,291 high-risk
individuals, 3%) (Figure 2 and Supplemental Figure 4).
Improvement in the number of BCs identified
within a high-risk group versus a random sample

When considered as single risk predictors, BC PRS was
associated with the highest gain in the proportion of BC
cases detected in the assessed period compared with the null
line, followed by the Gail model (GAIL), first-degree FH of
BC, and presence of LoF variants in high-penetrant BC
genes (Figure 2). The best-performing combinatorial model
comprises PRS, FH, and LoF (AUC2-year [95% CI]: 62.2
[60.8 to 63.6]) (Figure 2, Table 2).
Assigning weights to each risk prediction tool
improves the discriminatory ability

To account for the effect overlap between the different tools,
we examined whether the discriminatory ability changes
when risk prediction tools were assigned different weights
(Table 3). The best-performing backward stepwise logistic
regression model retained all 4 risk prediction tools (Youden
J-Index = 24.7, AUC2-year [95% CI]: 66.4 [64.8 to 67.9]).
After manually removing the Gail model, the AUC corre-
sponding to a model based on only PRS, LoF, and FH was
found to be similar (66.3 [64.7 to 67.8]).

The median follow-up time for 246,142 women was 12
years (interquartile range: 11 to 13 years). Of the 7646



Table 1 Characteristics of study participants

Characteristics

Breast Cancer Diagnosis Before Age 80 Years
All No Incident

PN = 246,142 n = 238,522 n = 7620

Median age at recruitment (IQR) 56 (50 to 63) 56 (50 to 63) 57 (51 to 63) <.001
Median age at breast cancer diagnosis

(IQR)
63 (57 to 69)

Race
White (includes British, Irish, and

other White background)
232,118 224,843 (94%) 7275 (95%) <.001

African American (includes African,
Caribbean, Black or Black British,
and other Black background)

4092 4017 (2%) 75 (1%)

Chinese American (includes Chinese) 887 868 (0%) 19 (0%)
Other Asian (includes Bangladeshi,

Indian, Pakistani, Asian or Asian
British, and other Asian
background)

4092 3971 (2%) 121 (2%)

Other (includes mixed, White and
Black, White and Black African,
White and Asian, unknown, and
prefer not to answer)

4953 4823 (2%) 130 (2%)

First degree family history of breast
cancer (mother and siblings)
None 230,372 223,519 (94%) 6853 (90%) <.001
1 15,304 14,576 (6%) 728 (10%)
2 or more 466 427 (0%) 39 (1%)

Age at menarche, years
≥14 87,577 84,981 (36%) 2596 (34%) .009
12 to 13 103,892 100,562 (42%) 3330 (44%)
≤11 47,014 45,534 (19%) 1480 (19%)
Unknown 7659 7445 (3%) 214 (3%)

Number of children
0 45,798 44,291 (19%) 1507 (20%) .002
1 32,833 31,765 (13%) 1068 (14%)
2 107,513 104,218 (44%) 3295 (43%)
3+ 59,442 57,707 (24%) 1735 (23%)
Unknown 556 541 (0%) 15 (0%)

Age at first live birth, years
No child 45,798 44,291 (19%) 1507 (20%) <.001
≤19 21,460 20,905 (9%) 555 (7%)
20 to 24 63,671 61,831 (26%) 1840 (24%)
25 to 29 70,749 68,525 (29%) 2224 (29%)
≥30 43,513 42,044 (18%) 1469 (19%)
Unknown 951 926 (0%) 25 (0%)

Menopausal status
Yes 147,683 142,940 (60%) 4743 (62%) <.001
No 59,266 57,586 (24%) 1680 (22%)
Unknown 39,193 37,996 (16%) 1197 (16%)

Ever attended breast cancer screening
Yes 194,441 188,111 (79%) 6330 (83%) <.001
No 50,979 49,707 (21%) 1272 (17%)
Unknown 722 704 (0%) 18 (0%)

Median polygenic risk score (IQR) −0.315 (−0.730 to 0.096) −0.324 (−0.737 to 0.087) −0.055 (−0.473 to 0.365) <.001
High-penetrance breast cancer genes

(ATM, BARD1, BRCA1, BRCA2, CHEK2,
PALB2, RAD51D, RAD51C, or TP53)
No 243,137 235,728 (99%) 7409 (97%) <.001
Yes (at least 1 loss-of-function variant) 3005 2794 (1%) 211 (3%)

Column percentages are shown within brackets.
IQR, interquartile range; P, P value from χ2 test (categorical variable) or Kruskal-Wallis test (continuous variable).
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Figure 1 Number of incident invasive breast cancer events by the 4 risk prediction tools represented in a Venn diagram. The
percentages of breast cancer events in high-risk women are shown within brackets. High-risk women were identified using the following
criteria: (1) x-year absolute risk above threshold as predicted by polygenic risk score (PRS: >0.7% for 2-year absolute risk, respectively), (2)
x-year absolute risk above threshold as predicted by the Gail model (GAIL: >0.5% for 2-year absolute risk, respectively), (3) family history of
breast cancer (yes, FH), and (4) presence of at least one loss-of-function variants (LoF) in any of the 9 breast cancer predisposition genes (ATM,
BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51D, RAD51C, and/or TP53). GAIL, the Gail model; FH, family history of breast cancer;
LoF, at least one loss-of-function variant; PRS, polygenic risk score.
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incident cases of BC (median follow-up time: 5 years,
interquartile range: 3 to 8 years), 474 were diagnosed in the
same year of recruitment. The Kaplan-Meier curves showed
significant separation between the low- and the high-risk
groups when we based the logistic regression model on
the 2-, 5- and 10-year absolute risk of PRS and the Gail
model (Supplemental Figure 5). At 10 years of follow-up,
98% of women identified as low risk and 96% of the
high-risk group were disease-free. High-risk women were
2.2 times (95% CI: 2.1 to 2.3) as likely to develop BC as
those in the low-risk group (Supplemental Table 2).
Discussion

Stratifying population-level service users by their individual
BC risk may improve resource utilization and alleviate the
issue of overdiagnosis.57 We identified individuals at high
risk of developing BC based on different established genetic
(PRS and LoF) and non-genetic (FH and the Gail model)
risk calculators in the large UK Biobank study. Two-, five-,
ten-year, and lifetime BC absolute risks were computed. The
analysis associated with 2-year BC absolute risk was asso-
ciated with the highest discriminatory value. Among the
246,142 women in the analytical cohort, 147,399 were
considered at high risk for developing BC within the next 2
years by at least 1 of the 4 BC risk assessment tools
examined. Among the high-risk individuals, 92,851 (38%)
were flagged by only 1 risk predictor. Seventy-nine percent
of the BCs that did develop within the next 2 years were
from the high-risk group. The union of high-risk individuals
identified by PRS, FH, and LoF yielded the best improve-
ment in the number of BC cases detected when compared
with a random sample. Assigning individual weights to each
risk prediction tool appeared to increase the discriminatory
ability.

Our observation that a large proportion of women are
uniquely flagged as high-risk by only 1 risk assessment tool
suggests that BC screening may benefit from including ge-
netic and non-genetic risk factors. BC PRS exerts an effect
distinct from traditional risk factors.58,59 The effect of PRS
on BC risk is known not to be strongly correlated with
FH36,39,60-62 and largely independent of other known risk
factors for BC, such as mammographic density,63 lifestyle
factors,59,60,64,65 reproductive factors, and hormone use.60,65

Considering different risk prediction models in tandem
improves performance.46,47,66 In a study comprising
126,894 women, the joint predictive model performed better
than PRS or non-genetic risk score alone.46 In the FinnGen
study, PRS improves risk prediction in women with a FH of
BC.66 In the Predicting the Risk of Cancer At Screening
study (PROCAS study), PRS improved risk stratification
significantly when compared with a model based only on
mammographic density and conventional risk factors;
however, the inclusion of gene panels showed no appre-
ciable effect.47 In our study, the best discriminatory ability



Figure 2 Comparison of how different combinations of breast cancer risk assessment tools perform in the UK Biobank
(n = 246,142 females, median age [IQR] = 56 [50 to 63] years). The figure shows the proportion of individuals flagged as high-risk by
different breast cancer risk assessment tools (x-axis) and the proportion of cases diagnosed within x years identified as high risk (where x is 2,
5, or 10; y-axis). Breast cancer polygenic risk score (PRS) was associated with the highest gain in the proportion of breast cancer cases
detected in the assessed period compared to the null line, followed by the Gail model (GAIL), first-degree family history of breast cancer
(FH), and presence of at least one loss-of-function variants in high-penetrant breast cancer genes (LoF). The best-performing combinatorial
model (in boxed labels) comprises PRS, FH, and LoF. FH, family history of breast cancer; LoF, at least one loss-of-function variant; PRS,
polygenic risk score.
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was associated with a combinatorial model including PRS,
FH, and LoF.

We show that risk stratification using PRS, FH, and LoF
offered the best gain in terms of the number of BC cases
detected in a high-risk population when compared with a
random sample. Fifteen percent (63% in high-risk women vs
48% of random selection) more cases may be identified by
looking within the high-risk women (48% of the population)
compared with taking a random sample of the same pro-
portion. This result agrees with previous works examining
the impact of using multiple risk prediction tools in risk-
based BC screening scenarios.67-69 Notably, Darabi et al
estimated that a customized screening strategy with input
from multiple risk models (eg, conventional risk factors,



Table 2 Discriminatory ability and performance measures when women were flagged as high-risk by taking the union of the risk predictor
combination selected in Figure 2

x-Year Absolute Risk PRSa Model Sensitivity Specificity AUC

95% CI of AUC

FPR FNR TPR TNRLower Upper

2-year 0.7 PRS ⋃ FH ⋃ LoF 59.1 65.4 62.2 60.8 63.6 99.2 0.3 0.8 99.7
5-year 1.4 PRS ⋃ FH ⋃ LoF 66.1 54.4 60.2 59.4 61.0 98.1 0.8 1.9 99.2
10-year 2.9 PRS ⋃ FH ⋃ LoF 64.2 55.3 59.8 59.2 60.4 96.2 1.8 3.8 98.2

AUC, area under the receiver operating curve; FH, family history of breast cancer; FNR, false negative rate; FPR, false positive rate; GAIL, the Gail model;
LoF, at least one loss-of-function variant; PRS, polygenic risk score; TNR, true negative rate; TPR, true positive rate.

ax-Year absolute risk threshold to define high risk.
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mammographic density, and PRSs) captures 10% more
cases than an age-based approach.67 In a scenario where BC
screening in the UK is adapted to screen women aged 35 to
79 years based on PRS rather than age alone, it is anticipated
that the proportion of women eligible for screening may be
decreased by 24%, resulting in a 14% reduction in screen-
detectable cases.70

An issue that emerged from this analysis is the large
number of women considered to be at high-risk by PRS and
the Gail model. All BC cases would be detected if all
women were considered to be at high-risk, which defeats the
aim of risk stratification. Hence, though our results show
that PRS and Gail are able to identify BC cases missed by
other risk predictors, it comes at a larger at-risk pool of
women who may or may not develop BCs in the future.

In previous literature, annual BC incidence rates can be 2
to 10 times higher among women considered high risk than
the general population.71 High risk for BC has been defined
as having a greater than or equal to 20% lifetime risk by the
American Cancer Society guidelines, or a 10-year risk of
≥8% according to the National Institute of Health and Care
Excellence risk assessment tool.72,73 Studies have shown
that only a small percentage of women are at high risk for
developing BC because of various measures. Apart from
groups with frequent founder pathogenic variants, such as
the Ashkenazi Jewish community, the population frequency
of pathogenic BRCA1/2 variants has been reported to be
1:400.74 Approximately 1 in 10 women in the Breast Cancer
Surveillance Consortium study reported first-degree FH of
BC.75 As reported by Niell et al, 13.7% of the screening
population studied were at elevated risk (>20% absolute
lifetime risk) according to 1 of 3 risk prediction models (ie,
modified Gail, Tyrer-Cuzick version 7, and BRCAPRO)
studied.73 In another report, Evans et al stated that only
about 1% of women in the population meet the pre-
determined definition of 8% 10-year risk or 30% lifetime
risk based solely on FH and conventional risk factors.72

However, this can increase to 6% when combined with
mammographic density and common BC genetic risk vari-
ants.72 It is important to note that the proportion of women
classified under high-risk varies depending on the study and
the criteria used to define high-risk. Because the UK Bio-
bank cohort is not a high-risk cohort, cost-effectiveness will
be a consideration when choosing a risk threshold.
To take different effect sizes into account, we assigned
weights to individual risk assessment tools and found that
the discriminatory value improved (95% CI of the AUCs did
not overlap). Nonetheless, risk thresholds specific to this
data set were derived by optimizing a statistical criterion
(eg, the Youden index) for the purpose of evaluating the
extent of overlap in high-risk individuals flagged by
different prediction models. The risk definitions in this study
may be different from widely accepted standards in clinical
practice. For example, according to the Gail model, a 5-year
absolute risk of 1.67% or higher is the U.S. Food and Drug
Administration guideline for taking a risk-lowering drug to
reduce BC risk. The threshold for what is considered at high
risk will ultimately depend on the intended interventions
(eg, chemoprevention, more frequent screenings, or targeted
invitation to attend screenings) and health care resources
available in each country. It should also be noted that
dichotomized risk stratification implies a loss of informa-
tion—everyone at high risk may be construed and regarded
as though they have the same risk.76 However, in the course
of implementation, a calibrated continuous risk provides for
more nuanced decision making at the individual level.

It has been shown that BC PRS have largely similar
predictive performance in Asian and European women.37,46

However, calibration performance is important to consider
for risk prediction tools for the translational implementation
of PRS.77 Evans et al examined 2 PRS developed and
validated in populations of European ancestry in underrep-
resented populations and reported that both PRS overstated
BC risk across all racial and ethnic groups (~40% over-
estimation in combined populations of non-European
ancestry).78 Similar observations regarding the over-
estimation of risks, especially at the higher risk extremes,
have been made in studies of Asian populations.79,80

Regardless, further studies are required to examine the as-
sociation of BC variants in non-European populations and to
refine or redefine ethnic-specific scores.81

The UK Biobank sample size offers significant statistical
power, well-documented and defined data collection pro-
cesses, and case identification by linking to national cancer
registries. As with any cohort study, the potential for se-
lection bias, such as a healthy volunteer selection bias,
cannot be dismissed.82 Participants in the UK Biobank are
known to be of higher economic status and have fewer



Table 3 Discriminatory ability and performance measures of different strategies in identifying high-risk women
Model Statistics

x-Year Absolute Risk

Absolute
Risk Cutoff

(%)

Model Threshold (P) Sensitivity Specificity
Youden

J-statistics AUC

95% CI of AUC

FPR FNR TPR TNRPRS GAIL Lower Upper

Full model (also the
best by stepwise
backward selection)
2-year 0.7 0.5 Logit(p): −6.29 + 0.70 PRS + 0.80

GAIL + 0.16 FH + 1.03 LoF
.5 61.4 63.4 24.7 66.4 64.8 67.9 99.2 0.3 0.8 99.7

5-year 1.4 1.4 Logit(p): −5.15 + 0.29 PRS + 0.21
GAIL + 0.15 FH + 0.90 LoF

1.2 59.6 61.5 21.1 64.4 63.5 65.4 98.0 0.9 2.0 99.1

10-year 2.9 3.0 Logit(p): −4.43 + 0.15 PRS + 0.10
GAIL + 0.16 FH + 0.85 LoF

2.5 59.0 60.6 19.6 63.5 62.9 64.2 96.0 1.8 4.0 98.2

Model without GAIL
2-year 0.7 - Logit(p): −5.91 + 0.75

PRS + 0.59 FH + 1.02 LoF
0.5 56.2 68.3 24.5 66.3 64.7 67.8 99.1 0.3 0.9 99.7

5-year 1.4 - Logit(p): −4.88 + 0.30
PRS + 0.43 FH + 0.90 LoF

1.3 53.6 67.2 20.7 64.4 63.5 65.4 97.9 0.9 2.1 99.1

10-year 2.9 - Logit(p): −4.16 + 0.15
PRS + 0.43 FH + 0.85 LoF

2.5 55.8 63.8 19.6 63.5 62.9 64.2 95.9 1.9 4.1 98.1

The models show beta weights from a stepwise logistic regression with backward removal predicting breast cancer risk using the 4 different risk prediction tools.
AUC, area under the receiver operating curve; FH, family history of breast cancer; FNR, false negative rate; FPR, false positive rate; GAIL, the Gail model; LoF, at least one loss-of-function variant; P, probability

from the combinatorial model; PRS, polygenic risk scores; TNR, true negative rate; TPR, true positive rate.
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lifestyle risk factors.83 In addition, UK Biobank participants
may be more health-conscious, have fewer comorbidities,
and, among older women, be associated with lower all-cause
death rates than the general population.82 In the selection of
risk threshold using the Youden J-index, individuals who
died within the prediction period were treated as noncases.
However, because the number of censored cases was small,
it is unlikely to have much of an impact on the results. The
generalizability of our findings may be limited to women of
European heritage. Limited access to non-genetic risk fac-
tors in the UK Biobank, such as detailed FH, number of
breast biopsies, and history of atypical hyperplasia may
explain the poor performance of the Gail model in BC risk
stratification. Mammographic density, a strong risk factor
for BC, is also not available as a variable for BC risk
assessment. As information on BC stage and hormone-
receptor subtype are not available in the UK Biobank, we
were unable to subset the analyses by tumor features.

Our findings suggest that risk-based BC screening pro-
grams may benefit from a multipronged approach that in-
cludes PRS, pathogenic variants in BC predisposition genes,
FH, and other recognized risk factors. In this regard,
comprehensive multipronged models are already being used
in clinical practice, especially in high-risk populations.84,85

However, a potential downside of these models is that their
inputs are more time-consuming to collect than the Gail
model. Nonetheless, to be successful, screening programs
require significant health resources, a strong infrastructure,
and capability within the country’s health care system.86

There are other remaining issues regarding optimal risk
thresholds, how participants are informed of risk assessment
findings, and how future policies may be shaped before the
potential of precision screening for BC is realized.
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