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Problem definition: In this paper, we study the fleet repositioning problem for a free-float vehicle sharing

system, aiming to dynamically match the vehicle supply and travel demand at the lowest total cost of

repositioning and lost sales.

Academic/Practical relevance: Besides the analytical results on the optimal repositioning policy, the

proposed optimization framework is applicable to practical problems by its computational efficiency as well

as the capability to handle temporally dependent demands.

Methodology: We first formulate the problem as a stochastic dynamic program. To solve for a multi-region

system, we deploy the distributionally robust optimization (DRO) approach that can incorporate demand

temporal dependence, motivated by real data. We first propose a “myopic” two-stage DRO model that serves

both as an illustration of the DRO framework as well as a benchmark for the later multi-stage model. We

then develop a computationally efficient multi-stage DRO model with enhanced linear decision rule (ELDR).

Results: Under a 2-region system, we find that a simple reposition up-to and down-to policy to be optimal,

when the demands are temporally independent. Such structure is also preserved by our ELDR solution.

We also provide new analytical insights by proving the optimality of ELDR in solving single-period DRO

problem. We then show that the numerical performance of ELDR solution is close to the exact optimal

solution from the dynamic program.

Managerial implications: In a real-world case study of car2go, we quantify the “value of repositioning”

and compare with several benchmarks to demonstrate that the ELDR solutions are computationally scalable

and in general result in lower cost with less frequent repositioning. We also explore several managerial

implications and extensions from the experiments.
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1. Introduction

Bike sharing systems are not new, since almost every major city from New York (e.g, Citi

Bike) to London (e.g., Santander Cycles) to Paris (e.g., Vélib’) has one. Unlike the station-

based systems in those cities where bikes are kept at docks, the free-float bike sharing

systems allow them to be picked up and left anywhere in well-defined service regions, saving

the last-mile walking from nearby bike stations to final destinations for riders. Thanks
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to the mobile applications for unlocking and tracking bikes, various bike sharing systems,

especially free-float ones such as Mobike and ofo, have brought more than 2 million new

bikes to Chinese city streets (Financial Times 2017). While the free-float systems create

convenience for riders, they also frustrate city authorities. On April 4, 2017, it was reported

that 10,000 bicycles entered the Shenzhen Bay Park (Shenzhen, China) making tourists

nearly unable to walk along the bay. To prevent similar instances in the future, the city

authorities of Shenzhen issued a ban on bikes inside the park for several days (Forbes

2017).

Such fleet management problem is not unique to bike sharing. It also occurs in car sharing

systems and is particularly critical when the systems are free-float. In the early station-

based vehicle sharing systems, such as Zipcar, customers are usually required to return the

vehicles to the same pickup stations and hence with the right number of vehicles at each

station, little repositioning is needed. To accommodate one-way trips, free-float systems

utilize the on-street parking spaces and allow customers to return the vehicles to any

parking spaces within its service region. The added flexibility makes fleet operations more

difficult. Compared to bikes, which can be repositioned in batches via trucks, repositioning

of cars certainly does not enjoy such economy of scale. Indeed, it can be quite costly to

reposition cars in cities. For example, car2go in Brooklyn dispatches a 40-person squad to

patrol “the borough for vehicles that are out of gas, illegally parked, too densely packed in

one region, or otherwise causing problems” and despite the efforts “you can’t always find

a car when you need one”(New York Magazine 2015).

While fleet repositioning is a critical operational decision, it is also important to the

strategic and tactical decisions in vehicle sharing business. When designing the service

region and planning the fleet configuration for a free-float vehicle sharing system, the firm

needs to consider the long-run operating cost in fleet management in the optimization of

strategic decisions (e.g., He et al. 2017, Lu et al. 2017). The modeling of fleet repositioning

is usually simplified in the models developed for the strategic planning. In this paper,

we focus on the operational problem of fleet repositioning for a free-float vehicle sharing

system, to meet random demands at the right places and right time.

We model the system as a network and first formulate the fleet repositioning problem as

a stochastic dynamic program in Section 3. The optimality of reposition up-to and down-

to policy is established for a 2-region system, under temporal independence of demand.
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The general stochastic dynamic program, however, is computationally intractable due to

“curse of dimensionality”, and it requires full distribution information of a high dimen-

sional random vector. To address both the issues of computational tractability and limited

information, in Section 4, we propose approximate solutions based on the distributionally

robust optimization (DRO) framework for multi-region systems with demand temporal

dependence. We first discuss a single period two-stage problem as an illustration of the

DRO framework. The exact solution to the single period problem—which we refer to as the

“myopic” solution—also serves as a benchmark for the later proposed heuristic for multi-

period problem. We then consider the general multi-period problem, for which we develop a

computationally efficient approximation algorithm using the enhanced linear decision rule.

Interestingly, we find that the solution from the approximation algorithm is exact for the

single period robust problem, and it preserves the reposition up-to and down-to structure

for a 2-region system. We examine numerically the performance of the proposed solutions

in Section 5. For a 2-region system, the multi-period robust solution performs closely to

the optimal solution from solving the dynamic program, which becomes computationally

intractable when the number of regions becomes large. Using a set of real-world car sharing

operational data, we quantify the value of repositioning and demonstrate that the multi-

period robust solution is still computationally efficient for multi-region system. We also

explore the impact of fleet size on the value of repositioning, and compare the repositioning

patterns to the demand patterns from the numerical experiments. Finally, we extend the

proposed ELDR approach to solve for the cases with spatial-temporal correlations infor-

mation and repositioning capacity constraint, and discuss practical considerations in its

implementation.

2. Literature Review

The emerging sharing economy has encouraged the innovations in shared mobility systems,

including peer-to-peer sharing (e.g., Turo), ride sharing (e.g., Uber and Didi) and vehicle

sharing (e.g., car2go and Mobike). In the operations management literature, several papers

have studied the former two systems. In the context of peer-to-peer marketplaces, Jiang

and Tian (2016) and Fraiberger and Sundararajan (2015) study customer’s decision of pur-

chases or rental while Benjaafar et al. (2018) examine the impact of sharing on ownership

and usage under factors such as rental price, cost of ownership and moral hazard cost, etc.
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In the context of on-demand platforms with self-scheduled service providers (such as ride

sharing platforms), Bimpikis et al. (2016), Tang et al. (2016), Cachon et al. (2017) and

Taylor (2017) all consider using price and wage as a measure to mitigate the mismatch

between demand and supply even though they differ significantly in modeling behaviors

of customers as well as service providers. Hu and Zhou (2016), on the other hand, studies

the more operational decisions of matching heterogeneous supply and demand with price

and wage exogenously given. In comparison, our paper studies the third system of vehicle

sharing in which the firm (rather than peers or self-scheduled service providers) primarily

controls the fleet. While we also consider an operational level problem with exogenously

given prices, our problem differs from that in Hu and Zhou (2016) in the sense that the firm

is unable to ration the demands by destinations, as opposed to the ability of prioritizing

certain type of demands in Hu and Zhou (2016), since in a free-float system, the firm has

no prior information about a particular customer’s destination.

Recently, there are also a number of papers that study various vehicle sharing systems.

Bellos et al. (2017) discuss the manufacturer’s strategy in offering car sharing business.

Since their model considers the station-based system that accommodates only round trips,

the fleet operations can be decoupled by each station and thus repositioning is not needed.

To estimate the effects of service levels on ridership, Kabra et al. (2016) measure the

accessibility of stations and the availability of bicycles using a set of operational data from

a bicycle sharing system in Paris. He et al. (2017) optimize the service region for free-

float electric vehicle sharing systems by modeling both the customer adoption behavior in

response to the service coverage and the fleet operations, e.g., repositioning and recharging,

using a queueing network. It is recognized in the above mentioned papers that vehicle

availability is crucial to maintain a desirable service level, but none of them have explicitly

discussed how to dynamically reposition vehicles among different regions.

The problem of repositioning a vehicle, or more generally an item, from one place to

another has long been investigated in both the operations research and transportation lit-

erature. In the context of inventory management, the repositioning of inventories is also

known as the transshipment. We refer the readers to Paterson et al. (2011) for a comprehen-

sive survey. While fleet repositioning share some similarities as inventory transshipment,

it differs in the key aspect that the replenishment of inventories (vehicles) can (and only)

come from both repositioning as well as “consumption” of inventory at another location.
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This feature, in the two-location case, actually simplifies the analysis compared to the

inventory transshipment problem. In addition, it is pointed out in Paterson et al. (2011)

that generally very limited results are available for optimal policies in a multi-location

problem and “[t]his leaves the possibility that current research on multi-location problem

could be developed further using different ideas so that better transshipment policies can

be found” (p. 134). To deal with the multi-region repositioning problem, in this paper we

propose a distributionally robust approach in finding good repositioning policies and our

numerical studies demonstrate that our approach is both computationally efficient and

achieves a satisfactory performance comparing to several benchmarks.

There are several related transportation problems, that have been studied in the past

decades. Shu et al. (2013) study the bicycle redistribution problem for bike sharing systems

using a spatial-temporal network flow model. Under a similar stochastic model, Nair and

Miller-Hooks (2011) develop a mixed-integer program with joint chance constraints. With

trip data from New York’s Citi Bike sharing, O’Mahony and Shmoys (2015) estimate the

demand flows and formulate a mixed-integer program for overnight repositioning. The fleet

repositioning problem has also been studied in Kek et al. (2009), Febbraro et al. (2012),

Boyacı et al. (2015) and Nourinejad et al. (2015) for one-way station-based systems. How-

ever, in the above optimization models for fleet repositioning, the demands are assumed to

be deterministic or follow Poisson processes. Built upon spatial-temporal networks, Erera

et al. (2009) and Lu et al. (2017) consider the future demand uncertainty in the reposition-

ing problems. Using an uncertainty budget concept from Bertsimas and Sim (2003), Erera

et al. (2009) propose robust dynamic empty container repositioning model as a mixed inte-

ger program. Lu et al. (2017) employ a two-stage stochastic integer programming model,

where the fleet and parking lots investment decisions are made in the first stage and fleet

operations are modeled as recourse decisions in the second stage. In our study, we first

characterize the structure of the optimal policy in the case of stochastic dynamic pro-

gram and then develop a practical approximation algorithm for the problem under general

time-varying random demands with possibly only partial distributional information.

A recent paper by Benjaafar et al. (2017) is most closely related to our work. Benjaafar

et al. (2017) also study the structural properties of the optimal repositioning policy in

a product rental network setting. Specifically, they show that the optimal policy is not

to reposition anything when the state lies in a certain region and to reposition to the
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boundary of the region when the state is outside of the region. When the rental network

consists of only two locations, their policy reduces to our reposition up-to and down-to

policy. While Benjaafar et al. (2017) provide a more general characterization than ours,

we point out some key differences here. In terms of proof, Benjaafar et al. (2017) establish

the convexity of the value function and the structure of the policy via an intricate analysis

of the derivatives of the value function. Our proof of the convexity, on the other hand, is

based on a simple equivalent formulation commonly used in lost-sales inventory models.

Our characterization of policy—although restricted to the 2-region case—is also based on

a simple submodular (and derivative free) argument and can be used to characterize the

structure of our robust repositioning policy as well. At a higher level, the focus of Benjaafar

et al. (2017) is mainly on a theoretical characterization of the optimal policy. Our emphasis,

however, is on a computationally efficient solution approach, which we complement with

some structural understanding and a real-world case study.

3. Fleet Repositioning Problem

We consider the fleet repositioning problem in a free-float vehicle sharing system that

operates in a well-defined service region. Different from the conventional station-based

systems, one-way trips are allowed in the free-float system where customers can pickup

any nearby available vehicles. Without informing the system about their destinations, the

customers are only required to return the vehicles anywhere in the service region to end

their trips.

Suppose the firm provides service to N regions as a network and customers can travel

between any two regions in the network. We use [N ] to denote the set of running indices,

i.e., {1, . . . ,N}. We let wij be the number of one-way trips by customers from region i to

region j, wii be the number of round trips by customers that start and end in region i,

and rij be the number of repositioning trips by the firm. In practice, the firm conducts

repositioning regularly over T periods a day. When the firm conducts repositioning in 4

shifts a day, we have T = 4. Since T is usually not large, we assume that both the customer

trips and repositioning trips can be completed within a period. For instance, if T = 4,

the average period of a shift is 6 hours that is sufficient to complete a trip within a city.

Therefore, we omit the travel time in our model for the ease of exposition.

To formally set up the mathematical model, in the following we refer bold faced charac-

ters such as x ∈RN and A ∈RM×N to vectors and matrices, and xi to the ith element of
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the vector x. The special vectors ei and 1 are dedicated to the unit vector with 1 at the

ith element and the vector of all ones respectively.

We model the fleet repositioning problem as a stochastic dynamic program with planning

horizon of T periods. At each period t, the outbound travel demand from region i is random

and is denoted as dit. We further denote dt = (dit) to be the vector of demands at all

regions in period t and d[t] = (d1, . . . ,dt) to be the historical demand realizations up to

period t. The demands at all regions during the whole planning horizon d[T] is assumed

to follow a known joint probability distribution P. At the beginning of period t, the firm

observes the physical distribution of the fleet xt = (xit) with xit vehicles in region i and the

historical demand realizations d[t−1] as the system state. Before any customer arrivals, the

firm makes repositioning decisions rt = (rijt) where rijt vehicles are repositioned from i to

j at the cost sijt > 0 per trip. After the repositioning, outbound travel demand dit arrives

at region i and picks up available vehicles. We assume that each vehicle is used to satisfy

at most one trip in each period (also seen in Benjaafar et al. (2017)). A customer arrival

finding no vehicles available at i is lost with a penalty pijt > 0 if her intended destination

is j. Note that in a free-float system, the firm is usually not able to ration the demands

based on their destinations. We assume, however, that the firm has the knowledge over

αijt, the probability that a customer trip originating from i at period t that ends at j.

Therefore, by letting wit be the total fulfilled customer trips from i and wijt be the fulfilled

customer trips from i to j, we can write wijt = αijtwit with
∑

j∈[N ]αijt = 1. We then define

the average lost sales penalty of a customer trip from region i as p̄it =
∑

j∈[N ]αijtpijt. We

formulate the following stochastic dynamic program (DP) in (1) to minimize the expected

total repositioning cost and lost sales penalty:

Vt
(
xt,d[t−1]

)
= min

rt≥0
0≤

∑
j∈[N ] rijt≤xit

 ∑
i,j∈[N ]

sijtrijt +EP
[
Jt
(
xt,rt,d[t]

)] . (1)

In (1), the expectation is taken over the conditional probability of dt given d[t−1], and

Jt
(
xt,rt,d[t]

)
=
∑
i∈[N ]

p̄it (dit−wit) +Vt+1

(
xt+1,d[t]

)
,
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where

xi(t+1) = xit +
∑
j∈[N ]

rjit−
∑
j∈[N ]

rijt +
∑
j∈[N ]

αjitwjt−wit, ∀i∈ [N ], t∈ [T ]

wit = min

dit, xit +
∑
j∈[N ]

rjit−
∑
j∈[N ]

rijt

 , ∀i∈ [N ], t∈ [T ].

and the terminal cost VT+1(xT+1) = 0.

The constraint
∑

j∈[N ] rijt ≤ xit in (1) ensures that the total repositioning departures from

i:
∑

j∈[N ] rijt do not exceed the available vehicles xit before repositioning. In the expression

of Jt(xt,rt,d[t]), the number of available vehicles xi(t+1) for the next period is the sum of

the number of available vehicles after repositioning : xit +
∑

j∈[N ] rjit −
∑

j∈[N ] rijt and the

net inflow of vehicles from the fulfilled demands:
∑

j∈[N ]αjitwjt−wit. The fulfilled demand

wit at region i is either the total demand: dit or the number of available vehicles after

repositioning: xit +
∑

j∈[N ] rjit−
∑

j∈[N ] rijt, whichever is smaller.

To facilitate the discussion, we use ∧ and ∨ as minimum and maximum operators, i.e.,

a∧ b= min(a, b) and a∨ b= max(a, b) for real numbers a and b. In the following, we show

that under a certain condition on the input cost parameters pijt, sijt, the value function

Vt(xt,d[t−1]) is convex in xt for any t∈ [T ].

Lemma 1. Suppose p̄it ≥
∑

j 6=i sji(t+1)αijt for any i∈ [N ] and t∈ [T ]. Then,

Jt
(
xt,rt,d[t]

)
= min

wt

∑
i∈[N ]

p̄it (dit−wit) +Vt+1

(
xt+1,d[t]

) ,

s.t. xi(t+1) = xit +
∑
j∈[N ]

rjit−
∑
j∈[N ]

rijt +
∑
j∈[N ]

αjitwjt−wit, ∀i∈ [N ],

wit ≤ dit ∧

xit +
∑
j∈[N ]

rjit−
∑
j∈[N ]

rijt

 , ∀i∈ [N ],

(2)

and Vt
(
xt,d[t−1]

)
is convex in xt for any t∈ [T ] and demand realization d[t−1].

Proof: Please see Appendix A.1 in the Online Supplement.

The condition p̄it ≥
∑

j 6=i sji(t+1)αijt in Lemma 1 (a similar condition is also imposed in

Benjaafar et al. (2017)) simply says that the average profit of satisfying a trip departing

from i should be greater than the average cost of repositioning the vehicle back to i in

the next period. In particular, the condition is satisfied if the system is stationary, i.e.,
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pijt = pij, sijt = sij, and pij ≥ sji—the profit of satisfying a trip from i to j is greater than

the cost of repositioning the vehicle from j back to i. With this condition, formulation

(2) in Lemma 1 states that even if the firm is able to hold back the vehicles and ration

demands, the firm still finds it optimal to satisfy the demands in the current period to its

full capability. In the subsequent discussion, we assume the above condition holds through

out the rest of the paper.

Even though Vt
(
xt,d[t−1]

)
is convex in xt under some reasonable condition on the cost

parameters, the state variables in (1) is still of N + (t− 1) dimensions and suffers from

the “curse of dimensionality”. Indeed, it is noted in the transshipment literature that

“[o]ptimal policies for lateral transshipment generally can only be found for a small number

of locations due to the large dimensions involved in multiple locations”(p.134 Paterson

et al. 2011) and many works focus solely on the case of two locations (see, for example,

Tagaras 1989, Chen et al. 2015, Abouee-Mehrizi et al. 2015). In the following, we first

demonstrate in Section 3.1 that the optimal repositioning policy in a 2-region system with

temporally independent demands has a simple structure and then discuss practical solution

approaches for the general N -region system with possibly dependent demands in Section 4.

3.1. Optimal Repositioning Policy in a 2-Region System

In this section, we consider a system of two regions 1 and 2. For period t, it is sufficient

to use rt to denote the repositioned vehicles from region 1 to 2 if rt > 0 and from region

2 to 1 if rt < 0, because repositioning in both directions simultaneously is never optimal.

Consequently, there are r+
t = rt ∨ 0 vehicles repositioned from region 1 to 2 and r−t =

−(rt∧0) vehicles repositioned from region 2 to 1. Let s12t and s21t denote the repositioning

cost per trip from 1 to 2 and 2 to 1 respectively and the average lost sales penalties be

p̄1t = p11tα11t+p12tα12t and p̄2t = p21tα21t+p22tα22t. We assume throughout this section that

the demands are independent over periods, and the condition in Lemma 1 is satisfied.

Note that the total fleet size x1t + x2t at any period t is a constant, which we denote

by C. Hence, we can reduce the dimension of the states by only using the number of

available vehicles at region 1 as the state variable, i.e., we let xt = x1t and keep in mind

that x2t =C −xt. Let yt = xt− rt be the the number of available vehicles at region 1 after

repositioning. We characterize the optimal repositioning policy as follows.
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Proposition 1. Suppose p̄it ≥ sji(t+1)αijt for i, j ∈ {1,2} and j 6= i. For each period t,

there exist xt and xt such that

r∗t (xt) =


xt−xt, xt ∈ [0, xt),

0, xt ∈ [xt, xt],

xt−xt, xt ∈ (xt,C],

y∗t (xt) =


xt, xt ∈ [0, xt),

xt, xt ∈ [xt, xt],

xt, xt ∈ (xt,C].

We call xt and xt the optimal reposition up-to and down-to levels respectively that are

defined by the following two convex programs

xt = arg min
0≤y≤C

{s21ty+EP[Jt(y,dt)]} , xt = arg min
0≤y≤C

{−s12ty+EP[Jt(y,dt)]} .

Proof: Please see Appendix A.2 in the Online Supplement.

The optimal repositioning policy is very intuitive and resembles the base stock policy

in the traditional inventory literature. Such two-threshold policy is also well-known in the

cash balance literature (see, for example, Eppen and Fama 1969). While Eppen and Fama

(1969) considers a backlogging model which leads to a linear state transition, here we

establish the two-threshold policy for a lost-sales model with nonlinear state transition.

When the inventory level at location 1 is below the threshold xt, it is optimal to reposition

vehicles from 2 to 1 and bring up the inventory level to the threshold xt; when the inventory

level at location 1 is above the threshold x̄t, it is optimal to reposition vehicles from 1 to 2

and bring down the inventory level to the threshold x̄t. Within the “comfort zone” [xt, x̄t],

it is optimal to do nothing. As one might expect, as the repositioning cost at period t

becomes higher, the set [xt, x̄t] becomes larger, i.e., the firm is more likely to find it optimal

to do nothing. This intuition is confirmed in the following result.

Corollary 1. Suppose p̄it ≥ sji(t+1)αijt for i, j ∈ {1,2} and j 6= i. For each period t, xt

is decreasing in s21t and x̄t is increasing in s12t.

Proof: Please see Appendix A.3 in the Online Supplement.

When T = 1, we can further characterize the optimal repositioning policy in closed-form

as the following corollary shows. For clarity, we drop t in the subscript.

Corollary 2. When T = 1, let F̄i(·) be the survival function of di for i= 1,2 and let

x0 and x0 be the solution to the following equations respectively

s21 + p̄1F̄1(y) + p̄2F̄2(C − y) = 0, − s12 + p̄1F̄1(y) + p̄2F̄2(C − y) = 0.
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Then the optimal reposition up-to and down-to levels are respectively x= x+
0 ∧C and x=

x+
0 ∧C.

Proof: Please see Appendix A.4 in the Online Supplement.

One can see from Corollary 2 that the optimal repositioning policy and hence the optimal

expected cost in this case only depend on the marginal distributions of d1 and d2, but not

the joint distribution. That is, the optimal repositioning policy is independent of demand

correlations across regions, when the planning horizon is a single period. When T > 1,

however, there are numerical examples showing that this observation is no longer true.

To conclude this section, we remark that the assumption of temporal independence

among demands and the assumption of a 2-region system are critical for our characteriza-

tion of the simple structure of the optimal repositioning policy in Proposition 1. Indeed,

Benjaafar et al. (2017) demonstrate that for multi-region system, the optimal reposition-

ing policy can no longer be characterized by simple thresholds. However, the analysis of

such simple system can help us understand the performance of approximate algorithms in

general systems, which we discuss next.

4. Distributionally Robust Solution Approaches

As we have pointed out earlier, the stochastic dynamic program approach generally suffers

from the “curse of dimensionality”. While there are numerous approximation schemes pro-

posed in the literature that can get around the computational difficulty, we remark that in

practice the more prominent issue is to estimate the joint distribution of d[T ], the demands

at all regions and all periods. Such information is usually difficult, if not impossible, to

acquire in practice. We take the example of car2go mentioned in the introduction. The ser-

vice region of car2go in San Diego, California consisted of 16 zip codes. Even if we crudely

cluster the zip codes into N = 5 regions and consider a daily operations of T = 3 reposition-

ing periods, d[T ] is a random vector of dimension 15. In contrast, with one-year operating

data of car2go, one has only around 250 weekday demand samples, and if monthly sea-

sonality is further taken into account, there are only around 22 weekday samples for each

month. Though car2go may face hundreds of thousands of transactions each year, it has

limited information when it comes to demand estimation. In this section, we address the

issue of limited information by using the framework of distributionally robust optimization

(DRO), where instead of assuming perfect knowledge of the distribution, one assumes the
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distribution lies in a certain ambiguity set. The resulting multi-period robust optimization

problem is still computationally demanding. We propose approximate solutions based on

the idea of linear decision rules to address the issue of computational tractability.

4.1. Ambiguity Set

Let RN,M be the space of all measurable functions from RN to RM that are bounded

on compact sets. Similar to Section 3, we define d[t] = (d1, . . . ,dt), where dt = (dit) and

d[0] = ∅. Hence, d[t] records all demand realizations from period 1 to t. Let P0

(
RNT

)
be

the set of all distributions on a random vector of length N × T and W be the support of

d[T ]. Instead of assuming a perfect knowledge of the joint distribution of d[T ], denoted as

P ∈ P0

(
RNT

)
, we assume here that P lies in a distributional ambiguity set F⊂P0

(
RNT

)
that is specified by the partial distributional information estimated from data.

The choice of the ambiguity set F greatly affects the tractability of robust formulation. As

noted in Bertsimas et al. (2018), using a second-order conic (SOC) representable ambiguity

set, one can formulate the DRO problem as a second-order cone program (SOCP) that

is efficiently solvable by commercial solvers including CPLEX and Gurobi. Therefore, we

adopt the SOC representable ambiguity set defined below:

F=


P∈P0(RNT )

EP(d) =µ

EP
(
(dit−µit)2)≤ σ2

it, ∀i∈ [N ], t∈ [T ]

EP

((∑t
l=k 1′(dl−µl)

)2
)
≤ γ2

kt, ∀k, t∈ [T ], k≤ t

P
(
d∈

(
d, d̄

))
= 1


.

The proposed ambiguity set is SOC representable as the support set W =
[
d, d̄

]
is a SOC representable set and the functions inside the expectations are SOC repre-

sentable functions, e.g., g(dit) = (dit − µit)2. Such ambiguity set requires simple descrip-

tive statistics from data and allows us to model a rich variety of structural information

about the random demands. First, it is natural to incorporate the bounded support, i.e.,

P
(
d∈

[
d, d̄

])
= 1, the first moment information, i.e., EP(d) =µ, and the second moment

information, i.e., EP
(
(dit−µit)2)≤ σ2

it. Furthermore, the partial cross moment information,

i.e., EP

((∑t
l=k 1′(dl−µl)

)2
)
≤ γ2

kt, captures both the demand correlations across regions

and time periods that are generally observed in travel patterns.

Incorporating partial cross moment information in the ambiguity set is motivated by our

data analysis of car2go’s operations. From their vehicle status data between March and
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April in 2014, we summarize the travel patterns of the system-wide hourly trips in Figure 1.

As we can notice from Figure 1 (a), the travel demand increases in the morning and

decreases in the evening. The temporal correlations of hourly trips are shown in Figure 1

(b). The positive autocorrelations at lag 1 and 24 indicates that the demands of the next

hour and the same hour tomorrow are positively correlated with the current demand.

Therefore, our observation suggests the importance of incorporating demand temporal

dependence in the optimization model.
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(a) Average system-wide hourly trips
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(b) The autocorrelation function (ACF) of hourly trips

Figure 1 Travel patterns of hourly trips in car2go San Diego

Following Bertsimas et al. (2018), we introduce auxiliary random variables u,v and

consider the following so-called “lifted ambiguity set” G:

G=


Q∈P0

(
RNT ×RNT ×R

T (T+1)
2

) EQ(d) =µ

EQ(uit)≤ σ2
it, ∀i∈ [N ], t∈ [T ]

EQ(vkt)≤ γ2
kt, ∀k, t∈ [T ], k≤ t

Q
(
(d,u,v)∈ W̄

)
= 1


.

Here, W̄ is the “lifted support set” defined as

W̄ =

(d,u,v)∈RNT ×RNT ×R
T (T+1)

2

d≤ d≤ d̄

(dit−µit)2 ≤ uit ≤ ūit, ∀i∈ [N ], t∈ [T ](∑t
l=k 1′(dl−µl)

)2 ≤ vkt ≤ v̄kt, ∀k, t∈ [T ], k≤ t

 ,

where ūit = max
{

(dit−µit)2, (d̄it−µit)2
}

and v̄kt = max
{(∑t

l=k 1′ (dl−µl)
)2
,
(∑t

l=k 1′
(
d̄l−µl

))2
}

.

Proposition 2. The set of marginal distributions of d under Q for all Q ∈ G, i.e.,

ΠdG, is equivalent to the ambiguity set F. That is, F = ΠdG.
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Note that G is the set of distributions on the random vector (d,u,v) while our original

ambiguity set F is the set of distributions only on d. Proposition 2 extends the lifting the-

orems in Bertsimas et al. (2018) by incorporating the upper bounds for auxiliary variables

u and v. As we show in Section 5.4, including upper bounds for u and v in the lifted

ambiguity set significantly improves the performance of our proposed robust solutions.

4.2. “Myopic” Robust Solution

We first examine a single period problem with T = 1. The solution to the single period

problem can also serve as the “myopic” solution for the multi-period problem, in which the

firm only considers the repositioning cost and lost sales penalty in the current period and

ignores all future costs. This simple robust model serves both as an illustration of various

concepts and techniques used in DRO as well as a benchmark for our algorithm on the

general multi-period model. For clarity, we temporarily drop the index t in the notations.

Given an ambiguity set of probability distributions F, the firm seeks to minimize the

worst-case expected cost over F. That is,

min
rij≥0

∑
i,j∈[N ]

sijrij + sup
P∈F

EP

∑
i∈[N ]

p̄i (di−wi(d))

 (3)

s.t.
∑
j∈[N ]

rij ≤ xi,∀i∈ [N ]

wi(d)≤ di ∧

xi + ∑
j∈[N ]

rji−
∑
j∈[N ]

rij

 ,∀d∈W, i∈ [N ].

One can alternatively view (3) as a two stage problem, where r = (rij) is the “here-and-

now” repositioning decision in the first stage before the realization of demands and wi(d)

is the adaptive decision after demand realization in the second stage. Similar to Lemma 1,

we can interpret wi(d) as the decision of how much demand to fulfill given the realization

d and since no future cost is considered, it is optimal to fulfill as much demand as possible.

With the lifted ambiguity set, we transform the two-stage DRO problem (3) in Lemma 2.

Lemma 2. The two-stage distributionally robust optimization problem (3) is equivalent

to the following optimization problem:

min
λ,η

θ,r≥0,δ≥0

∑
i,j∈[N ]

sijrij +λ+η′µ+
∑
i∈[N ]

σ2
i θi + γ2δ (4)
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s.t. λ+η′d +
∑
i∈[N ]

θiui + δv≥
∑
i∈[N ]

p̄i

di−xi−∑
j∈[N ]

rji +
∑
j∈[N ]

rij

+

,∀(d,u, v)∈ W̄

∑
j∈[N ]

rij ≤ xi,∀i∈ [N ]

Proof: Please see Appendix A.6 in the Online Supplement.

The optimization problem in (4) is not yet directly solvable, due to the sums of piecewise

linear functions and infinite number of constraints. We further reformulate it into a solvable

convex optimization problem in Proposition 3.

Proposition 3. Let P(N) be the power set of N . The exact optimal solution to the

two-stage model in (3) can be obtained by solving the following SOCP:

min
r,y,λ,η,θ,δ

β̄(S),β(S),β(S),β0(S),ρi(S),ρ0(S)

∑
i,j∈[N ]

sijrij +λ+η′µ+
∑
i∈[N ]

σ2
i θi + γ2δ (5)

s.t. yi = xi +
∑
j∈[N ]

rji−
∑
j∈[N ]

rij,∀i∈ [N ]

λ+
∑
i∈S

p̄iyi ≥ β̄(S)′d̄−β(S)′d +
1

2
1′β(S) +

1

2
β0(S)−

∑
i∈[N ]

ρi(S)′bi−ρ0(S)b0,∀S ∈P(N)


η− p̄(S)

θ

δ

=


β(S)− β̄(S)

0

0

+
∑
i∈[N ]

(A′iρi(S) +βi(S)ci) + A′0ρ0(S) +β0c0,∀S ∈P(N)

‖ρi(S)‖2 ≤ βi(S),∀i∈ [N ],∀S ∈P(N)

‖ρ0(S)‖2 ≤ β0(S),∀S ∈P(N)∑
j∈[N ]

rij ≤ xi,∀i∈ [N ]

θ≥ 0, δ≥ 0,r≥ 0, β̄(S),β(S)≥ 0,∀S ∈P(N)

where A0 =

1′ 0′ 0

0′ 0′ 1
2

, b0 =

1′µ

1
2

, c0 =


0

0

1
2

, Ai =

e′i 0′ 0

0 1
2
e′i 0

, bi =

µi
1
2

, ci =


0

1
2
ei

0

 ,∀i∈ [N ], p̄(S) = (p̄i(S))i∈[N ] with p̄i(S) = p̄i if i∈ S and 0 otherwise.
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Proof: Please see Appendix A.7 in the Online Supplement.

Our myopic robust model is now readily solvable by commercial solvers, e.g., CPLEX

and Gurobi, using the SOCP formulation in Proposition 3. However, both the number of

decision variables as well as constraints grows exponentially in N , due to P(N). Therefore,

using the above formulation, one can only obtain the exact robust solutions for small size

instances. As noted in Ardestani-Jaafari and Delage (2016), problems involving the sum of

piecewise linear functions are generally NP-hard, and one commonly used technique is to

approximate the piecewise linear functions via linear decision rule. Indeed, we apply the

idea of linear decision rule in designing our heuristic for the multi-period problem and we

will show in Section 4.4 below that our approximation algorithm gives the exact optimal

solution to the single period problem considered here under a mild technical condition.

4.3. Multi-Period Robust Solution

As we have already seen in Section 4.2, even in a single period problem, the adaptive

decisions are piecewise-linear functions of the realized demand, and the exact reformulation

of the robust model in (5) has exponential number of variables and constraints. In the

multi-period problem, future repositioning rijt, system state xit and demand fulfillment

wijt all become adaptive decisions, which can be general functions of all past demand

realizations, and hence the problem becomes even harder. We emphasize that, the adaptive

decisions we consider are non-anticipative, i.e., the adaptive decisions rijt, xit,wijt can be

represented as functions rijt(d[t−1]), xit(d[t−1]) and wit(d[t]). Notice here that wit depends

on d[t] while rijt and xit depend on d[t−1] since the former decision is made after the demand

at period t realizes while the latter are made before that.

To approximate the adaptive decisions, a common technique known as the linear decision

rule (LDR) is to restrict such decisions to affine functions of the random variables. In our

problem, we can apply the LDR by restricting rijt(d[t−1]), xit(d[t−1]) and wit(d[t]) to be

linear functions, that is, xt(·) ∈ LN(d[t−1]), rt(·) ∈ LN
2
(d[t−1]), and wt(·) ∈ LN(d[t]),∀t ∈

[T ], where for any positive integer M , we define

LM(d[t]) =
{

y ∈RNt,M ∃y0,y1
il ∈RM , i∈ [N ], l ∈ [t] : y(d[t]) = y0 +

∑
i∈[N ],l∈[t] y

1
ildil

}
to be the set of all measurable mappings from RNt to RM that are affinely dependent on the

realized demands in all regions from period 1 to period t. In the following, we use the same
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letter to express both an affine mapping and its linear coefficients but we use superscripts

on the letter to emphasize that the letter represents a particular linear coefficient. For

example, in the LDR for period t, x0
t denotes a vector of intercepts of the affine mapping

xt(·), while r1
ilt denotes a vector of slopes corresponding to dil of the affine mapping rt(·).

An important consideration in defining the lifted ambiguity set G in Section 4.1 is its

ability to improve the LDR approximation. Instead of restricting, say, wit(·) to be a linear

function of only d[t], one can incorporate the information from auxiliary random variables

(u,v) by letting wit(·) to be a linear function of (d[t],u[t],v[t]), where

u′[t] = (u′1, . . . ,u
′
t) with ut = (uit)i∈[N ], v′[t] = (vkl)1≤k≤l≤t, ∀t∈ [T ].

More formally, we restrict xt(·) ∈ L̄N(d[t−1],u[t−1],v[t−1]), rt(·) ∈ L̄N
2
(d[t−1],u[t−1],v[t−1]),

and wt(·)∈ L̄N(d[t],u[t],v[t]), where for any positive integer M , we define

L̄M(d[t],u[t],v[t]) =


y ∈R2Nt+

t(t+1)
2

,M
∃y0,y1

il,y
2
il,y

3
kl ∈RM ,

i∈ [N ], k ∈ [l], l ∈ [t]
:

y(d[t],u[t],v[t]) = y0+∑
i∈[N ],l∈[t] y

1
ildil+∑

i∈[N ],l∈[t] y
2
iluil+∑

l≤t
∑

k≤l y
3
klvkl


to be the set of all measurable functions from R2Nt+

t(t+1)
2 to RM that are affinely dependent

on all the revealed information from period 1 to period t, i.e., d[t] ∈ RNt,u[t] ∈ RNt and

v[t] ∈ R
t(t+1)

2 . The decision rule described above that utilizes the auxiliary information in

the lifted ambiguity set is also referred to as the enhanced linear decision rule (ELDR)

in the literature and is empirically observed to have a much better performance than its

LDR counterpart (see Bertsimas et al. 2018).

Having defined the mapping functions for adaptive decisions, we now provide the multi-

period DRO model that minimizes the worst-case expected total cost over the entire hori-

zon, under the lifted ambiguity set G with ELDR, as follows

min
rij1≥0

∑
i∈[N ]

∑
j∈[N ]

sij1rij1 +F (y1) (6)

s.t. yi1 = xi1 +
∑
j∈[N ]

rji1−
∑
j∈[N ]

rij1,∀i∈ [N ]

∑
j∈[N ]

rij1 ≤ xi1,∀i∈ [N ]
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where

F (y1) = min sup
Q∈G

EQ

∑
t∈[T ]

∑
i∈[N ]

p̄it (dit−wit(·)) +
∑

t∈[T−1]

∑
i,j∈[N ]

sij(t+1)rij(t+1)(·)

 (7)

s.t.
∑
j∈[N ]

rij(t+1)(·)≤ xi(t+1)(·),∀(d,u,v)∈ W̄, i∈ [N ], t∈ [T − 1]

0≤ rij(t+1)(·),∀(d,u,v)∈ W̄, i, j ∈ [N ], t∈ [T − 1]

xi(t+1)(·) = xit(·) +
∑
j∈[N ]

(αjitwjt(·) + rjit(·)−αijtwit(·)− rijt(·)) ,∀(d,u,v)∈ W̄, i∈ [N ], t∈ [T − 1]

yi(t+1) = xi(t+1)(·) +
∑
j∈[N ]

rji(t+1)(·)−
∑
j∈[N ]

rij(t+1)(·),∀(d,u,v)∈ W̄, i∈ [N ], t∈ [T − 1]

wit(·)≤ dit ∧ yit,∀(d,u,v)∈ W̄, i∈ [N ], t∈ [T ]

with xt+1(·)∈ L̄N(d[t],u[t],v[t]), rt+1(·)∈ L̄N
2
(d[t],u[t],v[t]), and wt(·)∈ L̄N(d[t],u[t],v[t]).

Compared to the stochastic dynamic program (2) introduced in Section 3, the

multi-period DRO model in formulation (6) seeks to minimize a worst-case objec-

tive by considering all possible distribution Q in the ambiguity set G. Note that if

one does not restrict wit(·) to be affine functions of (d[t],u[t],v[t]), then Lemma 1

also guarantees here that the optimal demand fulfillment decisions are w∗it(·) = dit ∧(
xit(·) +

∑
j∈[N ] rjit(·)−

∑
j∈[N ] rijt(·)

)
, which are nonlinear functions and would result in

an intractable formulation. As we will see shortly, by restricting wt(·) (and also xt(·),rt(·))

to be affine functions, our ELDR approximation in (6) can be solved very efficiently. Similar

to Lemma 2, we can reformulate F (y1) as a minimization problem below.

Lemma 3. The multi-period DRO problem F (y1) is equivalent to:

min
θ,δ≥0,λ,η

x0
t+1,x

1
il(t+1)

,x2
il(t+1)

,x3
kl(t+1)

r0
t+1,r

1
il(t+1)

,r2
il(t+1)

,r3
kl(t+1)

w0
t ,w

1
ilt,w

2
ilt,w

3
klt

λ+η′µ+
∑
i∈[N ]
t∈[T ]

σ2
i θi +

∑
k,t∈[T ]
k≤t

γ2
ktδkt (8)

s.t. Constraints in (7)

λ+η′d+
∑
i∈[N ]
t∈[T ]

θituit +
∑
k,t∈[T ]
k≤t

δktvkt ≥
∑
i∈[N ]
t∈[T ]

p̄it (dit−wit(·)) +
∑
i,j∈[N ]
t∈[T−1]

sij(t+1)rij(t+1)(·),∀(d,u,v)∈ W̄

where xt+1(·)∈ L̄N(d[t],u[t],v[t]), rt+1(·)∈ L̄N
2
(d[t],u[t],v[t]), and wt(·)∈ L̄N(d[t],u[t],v[t]).

Proof: We omit the proof here as it is similar to the proof of Lemma 2.
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The parameters that specify the ELDR are also decision variables in the first stage in

order to minimize the worst-case expected total cost. Moreover, constraints in problem (8)

are linear, since the adaptive decisions (x,r,w) are linear in (d,u,v)∈ W̄ under the ELDR.

Thus, problem (8) is a linear optimization problem with infinite constraints. Similar to

Proposition 3, we can then transform the robust optimization problem (8) and subsequently

problem (6) into an SOCP that can be efficiently solved by standard commercial solvers.

We would like to emphasize that in practical implementation (and in our numerical

study as well) problem (6) is solved in a rolling-horizon fashion. At each period, only the

here-and-now decision is implemented. For example, at the first period, we only implement

r1 that is solved from problem (6), without any obligation to using r2 in the second period.

When the first period’s demands realize and one reaches the second period, problem (6)

is solved again with a horizon T − 1 and we implement the new here-and-now solution

r2 solved from (6) in the second period. The rolling-horizon type implementation is also

commonly used in other heuristics for dynamic optimization problems as well.

The ELDR approach proposed here not only facilitates a tractable reformulation, it also

enjoys a couple of nice properties. We remark that in a 2-region system, the repositioning

policy derived from the ELDR in Section 4.3 preserves the reposition up-to and down-to

structure that is observed in the optimal dynamic programming solution in Proposition 1.

The details of the discussion are provided in the Appendix A.9.

4.4. The Optimality of ELDR When T = 1

Recall that in Section 4.2, we introduce the “myopic” robust solution approach as a single

period two-stage DRO problem (3), whose SOCP reformulation has exponential number of

decision variables and constraints, and hence cannot be efficiently implemented when the

problem size is large. Here, we show that our ELDR heuristic results in an optimal solution

for problem (3) under a mild technical condition. Suppose Z∗ is the optimal value to

problem (3). Our ELDR approach applied to problem (3) results in the following problem:

ZELDR = min
rij≥0

w(·)∈L̄N (d,u,v)

∑
i,j∈[N ]

sijrij + sup
Q∈G

EQ

∑
i∈[N ]

p̄i (di−wi(d,u, v))


s.t.

∑
j∈[N ]

rij ≤ xi,∀i∈ [N ]

wi(d,u, v)≤ di ∧

xi + ∑
j∈[N ]

rji−
∑
j∈[N ]

rij

 ,∀(d,u, v)∈ W̄, i∈ [N ].
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Note here that the formulation above restricts the recourse decisions w(·) to be a linear

function of d,u and v, while in (3), the recourse decision w(·) is only a function of d but

can be any general function (in fact, by Lemma 1, we know that the optimal recourse

decision is piecewise linear, i.e., w∗i (d) = di ∧ (xi +
∑

j∈[N ] rji −
∑

j∈[N ] rij)). Nevertheless,

we can show in the following proposition that when demands among different regions are

not too negatively correlated, the ELDR approach results in an optimal solution to (3).

Proposition 4. If γ ≥
√∑

i∈[N ] σ
2
i , then ZELDR =Z∗.

Proof: Please see Appendix A.8 in the Online Supplement.

We remark that the technical condition γ ≥
√∑

i∈[N ] σ
2
i is only sufficient for ZELDR =Z∗.

Numerically, we have also observed Z∗ = ZELDR for many instances with γ ≥
√∑

i∈[N ] σ
2
i

violated. However, when γ is too small, there are counterexamples in which Z∗ <ZELDR.

Proposition 4 adds new analytical insights to the limited literature that seeks to under-

stand the effectiveness of applying linear decision rule to robust optimization problems. In

particular, Iancu et al. (2013) provide conditions for the optimality of linear decision rule

when the ambiguity set only contains support information while Bertsimas et al. (2018)

prove the optimality of ELDR for two-stage problem when the second stage decision is

of one dimension. However, neither result applies to problem (3), where the ambiguity

set contains moments information and the second stage decision is of N dimension. By

exploiting the special structure in our problem, Proposition 4 establishes that ELDR can

also be optimal for two-stage DRO problem with arbitrary number of recourse decisions.

5. Numerical Studies

We conduct numerical experiments in various settings to examine the performance of multi-

stage robust ELDR solution (or ELDR solution in short) and explore managerial insights.

We first compare, in a 2-region system, the ELDR solution with the optimal solution

from solving the dynamic programming using simulated data sets with known probability

distributions. Furthermore, we discuss the impact of temporal demand correlation and the

effectiveness of partial cross moment information in the ambiguity set.

To complement our simulation study, we consider the real-world application of car2go

in San Diego, California. With its operational data, we illustrate the computational scal-

ability and the solution quality of the multi-stage robust model. Using “no repositioning”

policy as a benchmark, we quantify the value of repositioning under several considered
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approaches. We also examine the patterns of repositioning activities and travel demands,

and explore how fleet size affects the repositioning performance. Finally, we consider two

extensions to discuss the following questions: 1) can we improve the performance of ELDR

by incorporating spatial-temporal correlations? and 2) how does ELDR perform when there

is a capacity constraint on the repositioning quantity for each period?

All numerical experiments are carried out in CPLEX on a Windows Operating System

with 3.2GHz CPU and 32GB RAM. In the experiments, we include the mean value problem

(MVP) (e.g., Kek et al. 2009, Febbraro et al. 2012) as one benchmark. The MVP assumes

deterministic demands as their means, i.e., µit,∀i ∈ [N ], t ∈ [T ], and is solved as a linear

program provided in Appendix B.1. Similar to our ELDR solution, in all numerical studies,

the MVP solution is implemented in a rolling horizon fashion.

5.1. A 2-Region System

In this section, we test four different models: DP, MVP, “myopic” and ELDR in a 2-region

system with total 212 vehicles. We consider the 2-region system here, because the DP has

difficulty in dealing with larger systems due to the “curse of dimensionality”. The planning

horizon is set to T = {1,2,3,4}. For each period t, the expected trip demands at region 1

and 2 are µ1t = 176 and µ2t = 36 respectively. The trip distribution, lost sales penalty per

trip, and repositioning cost per trip are provided in Appendix B.2.

To evaluate the performance, we generate demands independently from identical distri-

butions: truncated normal, uniform and Poisson. In the normal distribution, the mean is

µit with the standard deviation σit = 1√
3
µit. As for the uniform distribution, the range is

set as [0.5µit,1.5µit]. The mean demand µit is also used as the arrival rate in Poisson distri-

bution. We conduct 20,000 numerical experiments with simulated demand samples from

the above probability distributions and evaluate the total cost with equal initial number of

vehicles at two locations. The average total costs from MVP, “myopic” and ELDR models

are then benchmarked with those from DP.

In Table 1, we report the relative difference between the average costs from MVP,

“myopic”, ELDR and that from DP in percentage respectively. As shown in Table 1, the

ELDR solutions perform closely to the benchmarking DP solutions which are the exact

optimal solutions. The average total costs under ELDR are within 6% gap and many of

them are less than 2% from those under DP. It is also worthwhile to notice that the perfor-

mance gaps of ELDR are stable under different distributions of demands. Notably, when
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Distribution T
Performance Gap from DP
MVP “myopic” ELDR

Normal
4 7.51% 40.20% 5.21%
3 10.15% 35.13% 5.33%
2 8.12% 22.66% 1.76%
1 20.10% 1.23% 1.23%

Poisson
4 8.35% 14.51% 4.67%
3 6.74% 11.86% 2.63%
2 6.51% 7.60% 1.34%
1 7.23% 1.52% 1.52%

Uniform
4 12.80% 38.27% 3.62%
3 9.12% 31.03% 1.20%
2 13.37% 21.36% 3.28%
1 27.35% 1.32% 1.32%

Table 1 Benchmarking with DP under Normal, Uniform and Poisson distributions

T = 1, the “myopic” and ELDR solutions coincide, as we have shown in Proposition 4.

However, for longer horizons, both MVP and ELDR outperform the “myopic” model in

which the firm only considers the current period and ignores all future information.

In the following, we introduce temporal demand correlation in the experiments under

the setting of Normal demand distribution and planning horizon T = 4. The demand in

region i at period t is generated by dit = µit+ξi+εit, where ξi ∼N(0, σ̂2
i ) and εit ∼N(0, σ2

i ).

The random variable ξi is region specific and time-independent. By scaling its variance σ̂2
i ,

i.e., σ̂2
i ∈ {0.5×σ2

i ,×σ2
i ,1.5×σ2

i ,2×σ2
i ,2.5×σ2

i ,3×σ2
i }, the demand temporal correlation

grows with larger scaling factors. To examine the effectiveness of incorporating partial cross

moment information in F, we also consider a reduced ambiguity set without constraint

EP

((∑t
l=k 1′(dl−µl)

)2
)
≤ γ2

kt, and denote the corresponding ELDR approach by ELDR-2.

Figure 2 reports the out-of-sample average daily costs under DP, ELDR and ELDR-

2 approaches. The daily costs under all approaches increase as the temporal correlation

of demand strengthens when the scaling factor increases. Moreover, the performance of

ELDR-2 is much less satisfactory compared to ELDR. In particular, the gap between

ELDR and ELDR-2 becomes greater when the temporal correlation is higher. It indicates

the importance of incorporating partial cross moment information in the ELDR approach.

Notably, when the temporal demand correlation is significant, e.g., the scaling factor is

larger than 2, ELDR outperforms DP, which ignores the demand temporal dependence.

5.2. Case Study of car2go San Diego

In this section, we quantify the value of repositioning using ELDR approach and two

benchmarks, MVP and the “myopic” model, and compare their performances in a real case
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Figure 2 Performance of DP, ELDR and ELDR-2 under demand temporal correlations.

study of car2go. As we have argued in Section 4, the DP approach is not applicable in this

case, since we have limited information about the distribution of the demands and it is not

computationally scalable to multi-region systems with temporal dependence in demands.

We have collected the vehicle status data between March and April, 2014, at every 5-min

interval, with a total of 25,873 trips over 22 weekdays and 8 weekends identified (e.g., see

Appendix B.3 for sample data). That is, we only have 22 samples of weekday demands

and 8 samples of weekend demands, which is insufficient to obtain an accurate estimation

of the joint distribution of d[T ]. We focus on the 13 zip codes where over 90% trips were

originated from and cluster them into 5 regions based on the inter-region trip intensities

(e.g., see Appendix B.4 for details). We vary the system from 2-region to 5-region in the

experiments, e.g., it includes regions {1, ...,N} in an N−region system. We divide a day

into T repositioning periods with T ∈ {3,4,5}. Note that the demand intensity in each

period also depends on T , as the period length is 6 hours when T = 4, in contrast to 8

hours when T = 3. In this data set, we have the origin and destination information of the

completed trips in each period, which we use to approximate the demand from each origin

and estimate trip distribution αijt. We can estimate the mean µit, the variance σ2
it and the

cross moment γ2
kt to construct the ambiguity sets for the “myopic” and ELDR models.

To estimate cost parameters, we follow car2go’s fare formula: pijt = p× tij, where p is

per-minute fare rate and tij is travel time from region i to region j. Similarly, we assume

the repositioning cost follows the same formula with sijt = s× tij, where s is the per-minute

repositioning cost. The per-minute fare rate of car2go is p= $0.41 (see car2go 2016). We
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MVP “myopic” ELDR
N T p/s

Repositioning VoR Repositioning VoR Repositioning VoR
3 1.49 10.42% 1.96 31.77% 1.58 34.33%
4 1.42 7.67% 1.81 29.48% 1.48 33.68%
5

0.41/0.32
1.89 4.53% 1.80 8.61% 1.77 13.38%

3 1.42 5.83% 1.64 17.13% 1.33 21.44%
4 1.31 5.31% 1.50 15.55% 1.23 20.74%

2

5
0.41/0.5

1.50 6.55% 1.55 12.80% 1.44 18.54%
3 2.09 7.56% 2.36 15.98% 2.21 17.87%
4 2.03 6.83% 2.31 18.33% 2.07 21.94%
5

0.41/0.32
2.02 6.29% 2.31 11.59% 2.11 15.35%

3 1.96 4.97% 2.09 10.91% 1.85 17.69%
4 1.87 4.57% 1.85 6.70% 1.71 11.93%

3

5
0.41/0.5

1.92 5.71% 2.14 11.11% 1.88 12.16%
3 2.96 6.29% – – 2.92 14.38%
4 3.75 7.50% – – 4.03 30.51%
5

0.41/0.32
4.18 5.39% – – 4.32 16.54%

3 2.86 3.77% – – 2.82 17.41%
4 3.75 4.08% – – 3.86 19.77%

4

5
0.41/0.5

4.18 3.09% – – 4.31 16.09%
3 4.15 4.55% – – 4.30 15.12%
4 5.03 4.59% – – 5.23 17.37%
5

0.41/0.32
5.72 5.67% – – 5.87 15.04%

3 4.05 3.64% – – 4.00 14.65%
4 4.80 3.94% – – 4.67 15.71%

5

5
0.41/0.5

5.35 2.95% – – 5.10 15.10%

Table 2 Average daily repositioning frequency and VoR under MVP, “myopic” and ELDR.

consider two possible per-minute repositioning cost with s∈ {$0.32,$0.50}. The travel time

tij is measured using ArcGIS based on the road network in San Diego. The total fleet size

C is then set to be the maximum demand within a day such that the lost sales mainly

comes from the imbalance of vehicle distribution rather than insufficient capacity.

To evaluate the performance of MVP, “myopic” and ELDR solutions, we use bootstrap

sampling to generate 1,000 weekday demand samples and 400 weekend demand samples

from the 22 weekday demands and 8 weekend demands in our data. For each of the sample,

we compute the total cost over T periods from all solutions. In addition, we compute for

each solution the total repositioning frequencies, defined as the total number of non-zero

repositioning operations over all regions and periods, i.e.,
∑

i,j,t 1{rijt>0}.

We use the “no repositioning” scenario, i.e., rijt = 0,∀i, j ∈ [N ], t ∈ T , as the reference,

and define the term “value of repositioning” (VoR) by the cost reduction in percentage,

from implementing repositioning. In Table 2, we summarize the average daily repositioning

frequency and VoR under the following approaches: MVP, “myopic” and ELDR. Also, the

average computation time of the respective models is reported in Table 3.
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N T MVP “myopic” ELDR
2 3 < 1 < 1 < 1
2 4 < 1 < 1 < 1
2 5 < 1 < 1 < 1
3 3 < 1 5 < 1
3 4 < 1 9 < 1
3 5 < 1 13 < 1
4 3 < 1 2,380 1
4 4 < 1 3,661 1
4 5 < 1 6,799 2
5 3 < 1 – 10
5 4 < 1 – 18
5 5 < 1 – 23

Table 3 Average CPU Time (in seconds) of MVP, “myopic” and ELDR

We notice several advantages of ELDR compared with MVP and the “myopic” model:

1) The ELDR solutions bring significant VoR from 11.93% to 34.33%, higher than MVP

and “myopic” with similar reposition frequency; 2) The ELDR model is computationally

scalable to handle larger systems, while the “myopic” model takes more than an hour

to solve for a 4-region system; and 3) The VoR of ELDR is generally higher when the

repositioning cost outweighs the lost sales penalty.

Furthermore, VoR generally reduces when N is larger. With more regions, the system

may become more balanced with customer trips on more origin-destination pairs. For

instance, including region 4 to the 3-region system allows customers to travel from and to

the newly added region, which may help the system self-balance via customer trips.
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Figure 3 Impact of fleet size on the performance of no repositioning, MVP and ELDR approaches
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We further conduct numerical experiments on the case of N = 4 and T = 3. Since the

“myopic” model is not scalable and less satisfactory than ELDR, we exclude it in the

subsequent discussion. Figure 3 suggests that larger fleet size helps alleviate the operating

cost by meeting more demand. Nevertheless, proactive fleet repositioning is still beneficial,

even with large fleet size. The gap between “no repositioning” and ELDR, i.e., the VoR of

ELDR, is consistently in the range from 14.04% to 14.74%.
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Figure 4 Repositioning and demand patterns on weekday

In Figure 4, we also depict the connection between the repositioning and demand pat-

terns. Figure 4 (a) reports the average repositioning-out quantities in each region i, summa-

rized by
∑

j∈[N ] rijt, using ELDR among all experiment instances. For example, it suggests

that, on average, the firm repositions vehicles from regions 2, 3 and 4 into region 1 in period

1, and repositions vehicles from regions 1, 2 and 4 into region 3 in the last period. Note

that in one experiment instance, it is never optimal for all regions to reposition vehicles

out in the same period. However, after averaging over all experiment instances, the average

repositioning-out quantities may be positive for all regions at some period.

By comparing the patterns of repositioning decisions and travel demands, it is clear that,

the firm should relocate vehicles to high-demand regions in the early periods, e.g., region

1 in Figure 4 (a). Meanwhile, the repositioning activity becomes milder in later periods. It

is because that repositioning in the early periods not only satisfies more demands in the

current period but also improves value-to-go and system dynamics in the future periods.

The repositioning decisions in the last period only depend on the system state as well as

the demand distribution in a single-period problem setting.
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5.3. Extension: spatial-temporal correlation

We extend the proposed form of ambiguity set F, as well as the “lifted ambiguity set” G,

to include the spatial-temporal correlations. We observe that, for example, the demand in

region 1 at time 2 has a positive correlation of 0.513 with the demand in region 2 at time

3. One possible reason is that some customers who drive from region 1 (to region 2) at

time 2 may return from region 2 (to region 1) at time 3.

We refer to the ELDR approach with the original ambiguity set F as the basic setting

here. We then consider two extended settings for ambiguity sets. In the first setting, we

extend the ambiguity set to F1 that includes additional pairwise correlation information,

e.g., covariances φ2
ikjt, whose correlation coefficients are greater than 0.5. In the second

setting, we extend the ambiguity set to F2 that includes all pairwise correlation information.

Their detailed formulations are provided in Appendix B.5.

p/s Ambiguity set VoR Repositioning CPU time (in seconds)

0.41/0.32
F 14.39% 2.92 1
F1 14.94% 2.92 12
F2 15.30% 2.91 36

0.41/0.5
F 17.42% 2.82 2
F1 18.13% 2.81 22
F2 18.33% 2.83 36

Table 4 ELDR performance in ambiguity sets with spatial-temporal demand correlation information

We report their performance in Table 4, for the case with N = 4 and T = 3. Under

both cost structures, incorporating more spatial-temporal correlation information helps

the ELDR model the demand distribution more precisely, and thus enhances its VoR with

similar frequency of repositioning. Nevertheless, including all pairwise spatial-temporal

correlations improves the VoR by only 1% from the basic setting F, at the cost of signif-

icantly increasing the computation time. Therefore, when implementing ELDR approach,

the firm should trade-off between the performance and the computational efficiency.

5.4. Extension: capacitated repositioning

One challenge in fleet repositioning is that it may be constrained by limited manpower

resources, as such operations require manual efforts to move the vehicles. In this extension,

we examine the effectiveness of ELDR in dealing with repositioning capacity Rt for each

period t. We directly incorporate the constraint
∑

i,j∈[N ] rijt ≤ Rt,∀t ∈ [T ] to the ELDR

problem (6). The performance of ELDR developed in this paper is benchmarked with the
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ELDR approach developed in Bertsimas et al. (2018), which is referred to as ELDR-BSZ.

As discussed in Section 4.1, the key difference is that, compared to ELDR-BSZ, we extend

the “lifted support set” W̄ by imposing upper bounds on the auxiliary variables u and v.

N T p/s
Basic With repositioning capacity

MVP ELDR-BSZ ELDR MVP ELDR-BSZ ELDR

2

3
0.41/0.32

10.42% 30.85% 34.33% 9.37% 20.85% 30.82%
4 7.76% 32.04% 33.68% 6.82% 21.90% 32.15%
5 4.53% 10.35% 13.38% 4.46% 8.25% 12.54%
3

0.41/0.50
5.83% 19.39% 21.44% 4.89% 12.95% 21.51%

4 5.31% 18.00% 20.74% 4.81% 13.99% 20.18%
5 6.55% 15.43% 18.54% 6.20% 11.21% 17.87%

3

3
0.41/0.32

7.56% 16.53% 17.87% 7.03% 12.77% 17.91%
4 6.83% 20.80% 21.94% 6.04% 13.95% 21.47%
5 6.29% 13.22% 15.35% 5.88% 11.37% 14.65%
3

0.41/0.50
4.97% 16.66% 17.69% 4.77% 11.82% 17.72%

4 4.57% 11.82% 11.93% 3.93% 8.96% 13.19%
5 5.71% 11.09% 12.16% 4.92% 8.10% 12.32%

4

3
0.41/0.32

6.29% 12.47% 14.38% 5.95% 11.23% 12.59%
4 7.50% 29.15% 30.51% 6.54% 22.31% 29.79%
5 5.39% 15.14% 16.54% 4.88% 11.78% 17.01%
3

0.41/0.50
3.77% 16.28% 17.41% 3.05% 13.16% 15.85%

4 4.08% 19.05% 19.77% 3.61% 16.37% 19.26%
5 3.09% 13.75% 16.09% 2.65% 12.46% 15.38%

5

3
0.41/0.32

4.55% 14.19% 15.12% 4.07% 11.84% 14.81%
4 4.59% 15.18% 17.37% 4.13% 12.88% 16.90%
5 5.67% 13.59% 15.04% 5.52% 11.99% 15.77%
3

0.41/0.50
3.64% 13.18% 14.65% 3.26% 10.55% 14.41%

4 3.94% 14.69% 15.71% 3.47% 11.44% 15.28%
5 2.95% 13.62% 15.10% 2.61% 9.34% 14.87%

Table 5 Average VoR of MVP, ELDR-BSZ and ELDR with and without repositioning capacity

We conduct experiments on both the basic case without repositioning capacity and the

case with repositioning capacity Rt set to 15% of the total fleet size. Table 5 presents

the average VoR from both ELDR and MVP. Under all instances, our proposed ELDR

outperforms ELDR-BSZ. We note that ELDR-BSZ perform closely to ELDR, when there is

no repositioning capacity constraint. With the presence of repositioning capacity, however,

the performance of ELDR-BSZ is only slightly better than MVP in some cases. Meanwhile,

the improvement of our proposed ELDR over ELDR-BSZ is much more significant. The

reason is that, when implementing ELDR-BSZ for the case with repositioning capacity,

the coefficients for auxiliary variables u and v will be forced to zero in order to satisfy the

repositioning capacity constraint. Consequently, the information on the higher moments

and cross moments of demands is not used by ELDR-BSZ and the advantage of ELDR is
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lost. By introducing upper bounds on u and v, our ELDR is capable of incorporating such

distributional information, even with repositioning capacity constraints.

6. Conclusion

In this paper, we study the fleet repositioning problem for free-float vehicle sharing systems.

Specifically, a stochastic dynamic program is developed and we show that the reposition up-

to and down-to policy is optimal for a 2-region system. To deal with multi-region systems

as well as incorporate demand temporal dependence, we propose two DRO models: the

“myopic” two-stage model and the multi-stage ELDR model. Theoretically, we establish

the optimality of the ELDR approach in solving single-period DRO problem.

Numerically, we show that in a 2-region system ELDR performs closely to the optimal

solution obtained from solving the dynamic program. In a more general multi-region set-

ting, our case study of car2go demonstrates that the ELDR model scales very well and its

solution outperforms the “myopic” and MVP. We conclude that ELDR is able to provide

sound adaptive repositioning decisions that bring significant value of repositioning. Close

investigation between the repositioning and demand patterns suggests that the firm should

relocate vehicles to high-demand regions in the early periods and tune down its repo-

sitioning activities in later periods. In the extensions with spatial-temporal correlations

information and repositioning capacity constraints, we discuss the practical considerations

in implementing the ELDR approach, such as the construction of ambiguity set.

While our development of the optimization framework and practical solutions is based

on the free-float vehicle sharing operations, the ELDR model can be directly extended

to station-based vehicle sharing systems, by adding parking capacity constraints. Further-

more, instead of centrally managing the fleet by the firm, it would be interesting to consider

using pricing as an instrument to incentivize customers to move vehicles. For example,

Mobike designates some “bonus” bikes that offer cash gifts to customers who ride them

with gift sizes depending on the origins and destinations. Thus, a potential further research

direction is to develop an optimal pricing scheme for fleet repositioning.
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Online Supplement: Robust Repositioning for Vehicle Sharing

Appendix A: Proofs

A.1. Proof of Lemma 1

Let f(wt) =
∑

i∈[N] p̄it (dit−wit) +Vt+1

(
xt+1,d[t]

)
for given d[t]. For the first part, we show that under the

condition p̄it ≥
∑

j 6=i sji(t+1)αijt, the solution w∗it = dit ∧
(
xit +

∑
j∈[N] rjit−

∑
j∈[N] rijt

)
is optimal for the

minimization problem in (2), which then confirms that Jt(xt,rt,d[t]) = f(wt
∗). Suppose, on the contrary,

there exists an optimal solution w′t to (2) with w′it < dit ∧
(
xit +

∑
j∈[N] rjit−

∑
j∈[N] rijt

)
for some i ∈ [N ].

We denote the state in t+ 1 under w′t as x′t+1. Let ε= dit ∧
(
xit +

∑
j∈[N] rjit−

∑
j∈[N] rijt

)
−w′it > 0, then

the solution constructed by wit =w′it+ε and wjt =w′jt for any j 6= i is still a feasible solution to (2) with a cost

f(wt) =
∑

i∈[N] p̄it (dit−wit)+Vt+1

(
xt+1,d[t]

)
=
∑

i∈[N] p̄it (dit−w′it)− p̄itε+Vt+1

(
xt+1,d[t]

)
. Observe here

that xi(t+1) = x′i(t+1)− ε+αiitε and xj(t+1) = x′j(t+1) +αijtε, ∀j 6= i. In period t+ 1 at state xt+1, it is always

feasible to first reach the state x′t+1 by letting rji(t+1) = αijtε for j 6= i, and rjk(t+1) = 0 for any j ∈ [N ], k 6= i, at

a cost
∑

j 6=i sji(t+1)αijtε. After reaching to state x′t+1, one can reposition again according to the optimal policy

at state x′t+1, which yields an optimal cost-to-go Vt+1

(
x′t+1,d[t]

)
. This two-step repositioning, however, may

not be optimal at state xt+1. Thus, we must have Vt+1

(
xt+1,d[t]

)
≤
∑

j 6=i sji(t+1)αijtε+ Vt+1

(
x′t+1,d[t]

)
.

Consequently,

f(wt)≤
∑
i∈[N]

p̄it (dit−w′it) +Vt+1

(
x′t+1,d[t]

)
− p̄itε+

∑
j 6=i

sji(t+1)αijtε

= f(w′t) +
∑
j 6=i

sji(t+1)αijtε− p̄itε

≤ f(w′t),

where in the last inequality we have used the condition that p̄it ≥
∑

j 6=i sji(t+1)αijt. Hence, wt must also be

optimal. This establishes that w∗it = dit ∧
(
xit +

∑
j∈[N] rjit−

∑
j∈[N] rijt

)
must be optimal.

For the second part, clearly VT+1(xT+1) is convex. Suppose Vt+1

(
xt+1,d[t]

)
is convex in xt+1 for t≤ T .

The objective function in (2) is then jointly convex in xt,rt,wt and the constraint set is a convex set. As a

result, for any d[t], Jt
(
xt,rt,d[t]

)
is convex in xt,rt (e.g., Proposition 2.2.15 in Simchi-Levi et al. 2005), and

hence EP[Jt(xt,rt,d[t])] is also jointly convex in xt,rt for any given d[t−1]. Thus, the objective function in

(1) is jointly convex in xt,rt. As the constraint set in (1) is also convex, Vt
(
xt,d[t−1]

)
is convex in xt. �

A.2. Proof of Proposition 1

For a 2-region system, the stochastic dynamic program (1) can then be simplified as:

Vt(xt) = min
xt−C≤rt≤xt

{
s12tr

+
t + s21tr

−
t +EP[Jt(yt,dt)]

}
where

Jt(yt,dt) = min
w1t,w2t

{p̄1t(d1t−w1t) + p̄2t(d2t−w2t) +Vt+1(xt+1)} ,

s.t. xt+1 = yt−α12tw1t +α21tw2t,

w1t ≤ yt ∧ d1t,

w2t ≤ (C − yt)∧ d2t,

and the terminal cost VT+1(xT+1) = 0.

To prove Proposition 1, we show the lemma below with the index t dropped for the ease of presentation.
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Lemma 4. If y = x− r and the function F (·) is convex, then there exist x and x such that the optimal

solution to minx−C≤r≤x {s12r
+ + s21r

−+F (y)}, denoted as r∗(x), is given by

r∗(x) =


x−x, x∈ [0, x),

0, x∈ [x,x],

x−x, x∈ (x,C],

and y∗(x) =


x, x∈ [0, x),

x, x∈ [x,x],

x, x∈ (x,C].

where x and x are provided by the following two convex programs

x= arg min
0≤y≤C

{s21y+F (y)}, x= arg min
0≤y≤C

{−s12y+F (y)}.

Proof of Lemma 4: Since F (y) is convex, F (x−r) is submodular in x and r (see Theorem 2.3.6 in Simchi-

Levi et al. 2005). Moreover, we see that [x−C,x] is an increasing set in x. By Theorem 2.3.7 in Simchi-Levi

et al. (2005), r∗(x) is increasing in x. Note that r∗(0)≤ 0 and r∗(C)≥ 0. Define x= inf{x : r∗(x)≥ 0} and

x = sup{x : r∗(x) ≤ 0}. By monotonicity of r∗(x), it holds 0 ≤ x ≤ x ≤ C. By definition, when x ∈ [0, x)

, r∗(x) < 0 and y∗(x) > x; when x ∈ (x,C] , r∗(x) > 0 and y∗(x) < x; and when x ∈ [x,x], r∗(x) = 0 and

y∗(x) = x.

Next, we show that when x ∈ [0, x), y∗(x) = x and hence r∗(x) = x− x. Note that when x ∈ [0, x), the

problem minx−C≤r≤x {s12r
+ + s21r

−+F (y)} is equivalent to min0≤y≤C
y≥x

s12(x− y)+ + s21(x− y)− + F (y),

where we have added the constraint y≥ x and this will not affect the optimality since we know y∗(x)>x for

x∈ [0, x). Thus, we can further reduce the problem to

min
0≤y≤C

s21(y−x) +F (y), (9)

where under the dummy constraint y≥ x, (x−y)+ = 0 and (x−y)− = y−x. Observe that the solution to (9)

does not depend on x; we denote this solution as y. That is, y∗(x) = y when x∈ [0, x). However, we also know

that y∗(x) = x, when x∈ [x,x]. Therefore, by continuity of y∗(x), we must have limx↑x y
∗(x) = y= x= y∗(x).

The other part when x∈ (x,C] can be shown similarly. This completes the proof of Lemma 4. �

By Lemma 1, Vt(xt) is convex in xt for any t∈ [T ]. As a result, EP[Jt(y,dt)] is convex in y. Proposition 1

then follows directly from Lemma 4 by letting F (y) = EP[Jt(y,dt)]. �

A.3. Proof of Corollary 1

From Proposition 1, we know that xt = y∗(s21t) = arg min0≤y≤C {s21ty+EP[Jt(y,dt)]} and xt = y∗(s12t) =

arg min0≤y≤C {−s12ty+EP[Jt(y,dt)]} . Since s21ty+EP[Jt(y,dt)] is supermodular in s21t and y (or submod-

ular in −s21t and y), xt = y∗(s21t) is decreasing in s21t. Similarly, −s12ty+EP[Jt(y,dt)] is submodular in s12t

and y, thus x̄t = y∗(s12t) is increasing in s12t. �

A.4. Proof of Corollary 2

When T = 1, the optimization problem becomes minx−C≤r≤x{s12r
+ + s21r

− + p̄1EP[(d1 − y)+] + p̄2EP[(d2 −
C + y)+]}. One can solve the thresholds x and x as the following two newsvendor type problems: x =

arg min0≤y≤C{s21y+ p̄1EP[(d1−y)+]+ p̄2EP[(d2−C+y)+]} and x= arg min0≤y≤C{−s12y+ p̄1EP[(d1−y)+]+

p̄2EP[(d2 −C + y)+]}. Note that by the first-order condition, x0 and x0 are respectively the unconstrained

optimal solution to the above two problems. Since the above two objective functions are convex in y, we

must have x= x+
0 ∧C and x= x+

0 ∧C.
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A.5. Proof of Proposition 2

This proof follows similar procedures in Bertsimas et al. (2018). First, we show that F ⊆ ΠdG. Suppose

P∈ F. We have P
((

d,{(dit−µit)2,∀i∈ [N ], t∈ [T ]} ,
{(∑t

l=k 1′(dl−µl)
)2
,∀k, t∈ [T ], k≤ t

)}
∈ W̄

)
= 1. We

can construct a probability distribution Q ∈ P0

(
RNT ×RNT ×R

T (T+1)
2

)
for (d,u,v) by letting P = ΠdQ,

uit = (dit − µit)2 for all i ∈ [N ], t ∈ [T ] and vkt =
(∑t

l=k 1′(dl−µl)
)2

for all k, t ∈ [T ], k ≤ t P-a.s. One can

verify that uit ≤ ūit and vkt ≤ v̄kt also hold, because d≤ d≤ d̄. Therefore, Q
(
(d,u,v)∈ W̄

)
= 1. Moreover,

since EQ(uit) = EP((dit−µit)2)≤ σ2
it and EQ(vkt) = EP(

(∑t

l=k 1′(dl−µl)
)2

)≤ γ2
kt, we have F⊆ΠdG.

Next, we show that ΠdG ⊆ F. For any Q ∈ G and P is the marginal distribution of d under any Q,

i.e., P ∈ ΠdG, we have EP(d) = EQ(d) = µ. Also, because Q
(
(d,u,v)∈ W̄

)
= 1, we have Q

(
d∈

(
d, d̄

))
=

1, Q ((dit−µit)2 ≤ uit) = 1 for all i ∈ [N ], t ∈ [T ] and Q
((∑t

l=k 1′(dl−µl)
)2 ≤ vkt) = 1 for all k, t ∈

[T ], k ≤ t. Hence, we have P
(
d∈

(
d, d̄

))
= 1, EP

(
(dit−µit)2

)
= EQ

(
(dit−µit)2

)
≤ EQ(uit) ≤ σ2

it and

EP

((∑t

l=k 1′(dl−µl)
)2)

= EQ

((∑t

l=k 1′(dl−µl)
)2) ≤ EQ(vkt) ≤ γ2

kt. Thus, P ∈ F. Consequently, we con-

clude that ΠdG⊆ F. �

A.6. Proof of Lemma 2

Given the first stage decision r, we derive supP∈FEP [p̄i (di−wi(d))]. By Proposition 2, we have

supP∈FEP [p̄i (di−wi(d))] = supQ∈GEQ [p̄i (di−wi(d))], under ambiguity sets F and G. The second stage

worst-case cost can then be calculated by the following infinite dimensional linear program:

max
Q∈G

∫
(d,u,v)∈W̄

∑
i∈[N]

p̄i (di−wi(d))dQ (d,u, v)

s.t.

∫
(d,u,v)∈W̄

ddQ (d,u, v) =µ (· · · dual variable η ∈RN)∫
(d,u,v)∈W̄

uidQ (d,u, v)≤ σ2
i ,∀i∈ [N ] (· · · dual variable θi ∈R)∫

(d,u,v)∈W̄
vdQ (d,u, v)≤ γ2 (· · · dual variable δ ∈R)∫

(d,u,v)∈W̄
dQ (d,u, v) = 1 (· · · dual variable λ∈R)

By the strong duality (Bertsimas et al. 2018), we have the dual formulation as

min
θ≥0,δ≥0,λ,η

λ+η′µ+
∑
i∈[N]

σ2
i θi + γ2δ

s.t. λ+η′d+
∑
i∈[N]

θiui + δv≥
∑
i∈[N]

p̄i (di−wi(d)) ,∀(d,u, v)∈ W̄

By wi(d) = di ∧
(
xi +

∑
j∈[N] rji−

∑
j∈[N] rij

)
, we have (di−wi(d)) =

(
di−xi−

∑
j∈[N] rji +

∑
j∈[N] rij

)+

.

Combining the second stage worst-case cost with the first stage problem, we have the formulation (4). �

A.7. Proof of Proposition 3

Let P(N) be the power set of [N ]. Since
(
di−xi−

∑
j∈[N] rji +

∑
j∈[N] rij

)+

takes value either di − xi −∑
j∈[N] rji +

∑
j∈[N] rij or 0, we are able to write the sum of piecewise linear functions as

∑
i∈[N]

p̄i

di−xi−∑
j∈[N]

rji +
∑
j∈[N]

rij

+

= max
S∈P(N)

∑
i∈S

p̄i

di−xi−∑
j∈[N]

rji +
∑
j∈[N]

rij

 .
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Let yi = xi +
∑

j∈[N] rji−
∑

j∈[N] rij , the first constraint in problem (4) can then be written as λ+η′d +∑
i∈[N] θiui + δv≥ max

S∈P(N)

∑
i∈S

p̄i (di− yi) ,∀(d,u, v)∈ W̄. This is also equivalent to

λ+η′d +
∑
i∈[N]

θiui + δv≥
∑
i∈S

p̄i (di− yi) ,∀S ∈P(N),∀(d,u, v)∈ W̄ (10)

We reorganize the terms in the above constraint into: λ +
∑

i∈S p̄iyi ≥

max(d,u,v)∈W̄

{
(p̄(S)−η)

′
d−

∑
i∈[N] θiui− δv

}
,∀S ∈P(N). The subproblem on the right-hand-side (RHS)

is a SOCP. To see this, we can equivalently rewrite W̄ into a set of second-order conic constraints:

W̄ ≡

(d,u,v)∈RN ×RN ×R

d≤ d≤ d̄√
(di−µi)2

+
(
ui−1

2

)2 ≤ ui+1
2
, ∀i∈ [N ]√

(1′(d−µ))
2

+
(
v−1

2

)2 ≤ v+1
2

 .

Note that the subproblem max(d,u,v)∈W̄

{
(p̄(S)−η)

′
d−

∑
i∈[N] θiui− δv

}
is bounded and there exists an

interior point in W̄. Let β̄(S) ∈ RN , β(S) ∈ RN , β(S) ∈ RN , β0(S) ∈ R, ρi(S) ∈ R2 and ρ0(S) ∈ R2 be the

corresponding dual variables. By strong duality, the equivalent dual problem is also a SOCP:

min
β̄(S),β(S)≥0

β̄(S)′d̄−β(S)′d +
1

2
1′β(S) +

1

2
β0(S)−

∑
i∈[N]

ρi(S)′bi−ρ0(S)b0

s.t.

η− p̄(S)
θ
δ

=

β(S)− β̄(S)
0
0

+
∑
i∈[N]

(A′iρi(S) +βi(S)ci) + A′0ρ0(S) +β0c0

‖ρi(S)‖2 ≤ βi(S),∀i∈ [N ]

‖ρ0(S)‖2 ≤ β0(S)

where A0 =

[
1′ 0′ 0
0′ 0′ 1

2

]
, b0 =

(
1′µ

1
2

)
, c0 =

 0
0
1
2

, Ai =

[
e′i 0′ 0
0 1

2
e′i 0

]
, bi =

(
µi
1
2

)
, ci =

 0
1
2
ei
0

 ,∀i∈ [N ].

We are now able to replace the maximization problem in constraint (10) with the dual prob-

lem. Consequently, constraint (10) is equivalently saying that there exists a feasible solution(
β̄(S),β(S),β(S), β0(S),ρi(S),ρ0(S)

)
satisfying the following constraints for all S ∈P(N):

λ+
∑
i∈S

p̄iyi ≥ β̄(S)′d̄−β(S)′d +
1

2
1′β(S) +

1

2
β0(S)−

∑
i∈[N]

ρi(S)′bi−ρ0(S)b0 η− p̄(S)
θ
δ

=

β(S)− β̄(S)
0
0

+
∑
i∈[N]

(A′iρi(S) +βi(S)ci) + A′0ρ0(S) +β0c0

‖ρi(S)‖2 ≤ βi(S),∀i∈ [N ]

‖ρ0(S)‖2 ≤ β0(S)

β̄(S),β(S)≥ 0

By replacing the first constraint in problem (4) with the above, we have the SOCP in the proposition. �
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A.8. Proof of Proposition 4

Before proving Proposition 4, we first introduce several notations. Let ŵi(d) = di − wi(d), ŵi(d,u, v) =

di−wi(d,u, v), yi = xi +
∑

j∈[N] rji−
∑

j∈[N] rij ,

β(y) = min
ŵi(·)

sup
P∈F

EP

∑
i∈[N]

p̄iŵi(d)

 (11)

s.t. ŵi(d)≥ (di− yi)+,∀d∈W, i∈ [N ].

and

βELDR(y) = min
ŵi(·)

sup
Q∈G

EQ

∑
i∈[N]

p̄iŵi(d,u, v)

 (12)

s.t. ŵi(d,u, v)≥ (di− yi)+,∀(d,u, v)∈ W̄, i∈ [N ],

ŵ(·)∈ L̄N(d,u, v).

Here ŵi(d) in β(y) refers to any decision rule and wi(d,u, v) in βELDR(y) is restricted to ELDR. Then,

Z∗ = min∑
j∈[N] rij≤xi,rij≥0

 ∑
i,j∈[N]

sijrij +β(y)

 , ZELDR = min∑
j∈[N] rij≤xi,rij≥0

 ∑
i,j∈[N]

sijrij +βELDR(y)

 .

In addition, for i∈ [N ], let

βi(yi) = min
ŵi(·)

sup
Pi∈Fi

EPi
[p̄iŵi(di)]

s.t. ŵi(di)≥ (di− yi)+,∀di ∈Wi,

where Fi =

 P∈P0(R)

EP(di) = µi

EP

(
(di−µi)2

)
≤ σ2

i ,

P
(
di ∈

(
di, d̄i

))
= 1

 , and Wi = [di, d̄i], and let

βELDR
i (yi) = min

ŵi(·)
sup
Qi∈Gi

EQi
[p̄iŵi(di, ui)]

s.t. ŵi(di, ui)≥ (di− yi)+,∀(di, ui)∈ W̄i,

ŵi(·)∈ L̄(di, ui),

where Gi =

Q∈P0 (R×R)
EQ(di) = µi
EQ(ui)≤ σ2

i ,
Q
(
(di, ui)∈ W̄i

)
= 1

 , with W̄i =
{

(d,u)| di ≤ di ≤ d̄i, (di−µi)2 ≤ ui ≤ ūi
}
.

To show that ZELDR = Z∗, it is then sufficient to show that βELDR(y) = β(y) for any y. We establish this

via the following two lemmas.

Lemma 5. If γ ≥
√∑

i∈[N] σ
2
i , then β(y) =

∑
i∈[N] βi(yi) for any y.

Proof First note that β(y) = supP∈FEP

[∑
i∈[N] p̄i(di− yi)+

]
and

∑
i∈[N] βi(yi) =∑

i∈[N] supPi∈Fi
EPi

[p̄i(di− yi)+] . We first show that β(y) ≤
∑

i∈[N] βi(yi). Indeed, for any P ∈ F, let Pi be

the marginal distribution for di. By the feasibility of P, we have EPi
(di) = µi, EPi

(
(di−µi)2

)
≤ σ2

i , and

Pi
(
di ∈

(
di, d̄i

))
= 1. That is, Pi ∈ Fi. In addition, EP

[∑
i∈[N] p̄i(di− yi)+

]
=
∑

i∈[N] EPi
[p̄i(di− yi)+] ≤∑

i∈[N] supPi∈Fi
EPi

[p̄i(di− yi)+] . This shows that β(y)≤
∑

i∈[N] βi(yi).
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On the other hand, for any Pi ∈ Fi, we construct a joint distribution P for (d1, ..., dN) as P(d1 ≤ ω1, ..., dN ≤
ωN) =

∏
i∈[N] Pi(di ≤ ωi), ∀ωi ∈ [di, d̄i]. In other word, given the marginal distributions of di, i ∈ [N ], we

can find a joint distribution with the marginal distributions such that di, i ∈ [N ] are independent. To ver-

ify P ∈ F, note that EP(di) = µi, EP

(
(di−µi)2

)
≤ σ2

i , and P
(
di ∈

(
di, d̄i

))
= 1, by the feasibility of Pi.

By the independence of Pi, and the assumption that γ ≥
√∑

i∈[N] σ
2
i , we have EP

(
(
∑

i∈[N](di−µi))2
)

=∑
i∈[N] EP ((di−µi)2) =

∑
i∈[N] σ

2
i ≤ γ2. Hence, P ∈ F, and it follows that

∑
i∈[N] EPi

[p̄i(di− yi)+] =

EP

[∑
i∈[N] p̄i(di− yi)+

]
≤ supP∈FEP

[∑
i∈[N] p̄i(di− yi)+

]
, i.e.,

∑
i∈[N] βi(yi)≤ β(y). �

Lemma 6. For any yi, βi(yi) = βELDR
i (yi).

Proof Theorem 4 in Bertsimas et al. (2018) shows that ELDR can obtain the optimal objective value for

linear DRO problem with only one second stage decision variable. Recall that yi is the only second stage

decision variable in βi(yi), ELDR can achieve the same optimal objective value. �

We now complete the proof of Proposition 4. Let ŵ∗i (di, ui) = w0
i + w1

i di + w2
i ui be the optimal solu-

tion in solving βELDR
i (yi). Let ŵ∗i (d,u, v) = w0

i + w1
i di + w2

i ui. Clearly, ŵ∗i (d,u, v) ∈ L̄(d,u, v) since the

linear coefficients corresponding to the variables dj , uj , j 6= i and v are simply zero. In addition, for

any i ∈ [N ], ŵ∗i (d,u, v) ≥ (di − yi)+,∀(d,u, v) ∈ W̄ by the feasibility of ŵ∗i (di, ui). Hence, ŵ∗i (d,u, v) is

a feasible solution to (12). It follows that βELDR(y) ≤ supQ∈GEQ

[∑
i∈[N] p̄iŵ

∗
i (d,u, v)

]
. For any Q ∈

G, let Qi be the marginal distribution of (di, ui). It is easy to see that Qi ∈ Gi. It then follows that

EQ

[∑
i∈[N] p̄iŵ

∗
i (d,u, v)

]
=
∑

i∈[N] EQi
[p̄iŵ

∗
i (di, ui)] ≤

∑
i∈[N] supQi∈Gi

EQi
[p̄iŵ

∗
i (di, ui)] =

∑
i∈[N] β

ELDR
i (yi).

Thus, βELDR(y)≤ supQ∈GEQ

[∑
i∈[N] p̄iŵ

∗
i (d,u, v)

]
≤
∑

i∈[N] β
ELDR
i (yi). By Lemma 5 and Lemma 6, we know

that for γ ≥
√∑

i∈[N] σ
2
i , we have β(y) =

∑
i∈[N] βi(yi) =

∑
i∈[N] β

ELDR
i (yi). Therefore, βELDR(y)≤ β(y). On

the other hand, for any ŵ(·)∈ L̄N(d,u, v), it must also be a feasible solution to (11). Hence, βELDR(y)≥ β(y),

which then implies βELDR(y) = β(y). Therefore, we have ZELDR =Z∗. �

A.9. Proof of Robust Repositioning Policy in a 2-Region System

Consider a 2-region system with regions 1 and 2. For any period t ∈ [T ], we denote r12t as the vehicle

repositioning from region 1 to 2 and r21t from region 2 to 1. Similar to Section 3.1, let xt be the available

vehicles at region 1 at the beginning of period t. The rest of the variables follow from the previous discussions.

Our robust model for the 2-region system can be formulated as below.

min
0≤r121≤x1

0≤r211≤C−x1

s121r121 + s211r211 +F (y1) (13)

s.t. y1 = x1− r121 + r211

where F (y1) is directly from formulation (7) by setting N = 2.

By Lemma 3, we can write F (y1) as the optimal value to the following infinite dimensional linear program:

min
θ,δ≥0,λ,η

x0
t+1,x

1
il(t+1),x

2
il(t+1),x

3
kl(t+1)

r0t+1,r
1
il(t+1),r

2
il(t+1),r

3
kl(t+1)

w0
t ,w

1
ilt,w

2
ilt,w

3
klt

λ+η′µ+
∑
i∈[2]
t∈[T ]

σ2
i θi +

∑
k,t∈[T ]
k≤t

γ2
ktδkt

s.t. Constraints in (7)

λ+η′d+
∑
i∈[2]
t∈[T ]

θituit +
∑
k,t∈[T ]
k≤t

δktvkt ≥
∑
i∈[2]
t∈[T ]

p̄it (dit−wit(·)) +
∑

t∈[T−1]
i,j∈[2]

sij(t+1)rij(t+1)(·),∀(d,u,v)∈ W̄.
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All constraints in the above program are linear and hence the constraint set is convex. In addition, the

objective is linear, which is then jointly convex in all decision variables and y1. As a result, F (y1) is convex

in y1 (see, for example, Proposition 2.2.15 in Simchi-Levi et al. 2005). Using Lemma 4 in the Appendix, we

then have the following result on the structure of the robust repositioning policy.

Consider a 2-region system. For any x1, let r∗121, r
∗
211 be the optimal solution to (13), rR

1 (x1) = r∗121− r∗211

and yR
1 (x1) = x1− rR

1 (x1), then there exist x1 and x1 such that

rR
1 (x1) =


x1−x1, x1 ∈ [0, x1),

0, x1 ∈ [x1, x1],

x1−x1, x∈ (x1,C],

and yR
1 (x1) =


x1, x∈ [0, x1),

x1, x1 ∈ [x1, x1],

x1, x1 ∈ (x1,C].

where x1 and x1 are solutions to the following two convex programs

x1 = arg min
0≤y≤C

{s211y+F (y)}, x1 = arg min
0≤y≤C

{−s121y+F (y)}.

The result confirms the desirable structural properties of our robust repositioning policy, even without the

assumption of demand temporal independence.

Appendix B: Data and Setup for Numerical Studies

B.1. The MVP Formulation

The MVP is solved as the following linear program:

min
rijt≥0

∑
i∈[N]

∑
j∈[N]

sijtrijt + p̄it (µit−wit)


s.t. xi(t+1) = xit +

∑
j∈[N]

(αjitwjt + rjit)−
∑
j∈[N]

(αijtwit + rijt) ,∀i∈ [N ], t∈ [T ]

∑
j∈[N]

rijt ≤ xit,∀i∈ [N ], t∈ [T ]

wit ≤ µit ∧

xit +
∑
j∈[N]

rjit−
∑
j∈[N]

rijt

 ,∀i∈ [N ], t∈ [T ].

B.2. Parameters for 2-Region System

The trip distribution, lost sales penalty per trip, and repositioning cost per trip are

(αijt) =

[
0.87 0.13
0.72 0.28

]
, (pijt) =

[
15.34 12.58
15.05 9.60

]
, (sijt) =

[
13.81 11.33
13.55 8.63

]
,∀t∈ [T ].

B.3. Sample Data of car2go San Diego

Here we provide 10 lines of sample vehicle status data that record the vehicle ID, address, GPS coordinates

and time stamp. We then use the vehicle status data to track the movement of each vehicle and identify

trips by checking the changes of locations as well as the trip durations.

B.4. Region Clustering

Based on the inter-region travel intensities, we cluster the zip codes into 5 regions as below:
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Table 6 Sample Data of Vehicle Status in car2go San Diegon

Vehicle ID Address Coordinates TimeGMT+8
6UK E956 India St 2166, 92101 [-117.16968,32.72708,0] 23/3/14 19:41
6UK F014 Collier Ave 3490, 92116 [-117.11775,32.76548,0] 23/3/14 19:41
6RF N765 India St 3209, 92103 [-117.17541,32.73672,0] 23/3/14 19:41
6UK C946 Park Blvd 4113, 92103 [-117.14623,32.75251,0] 23/3/14 19:41
6UK E958 Mission Blvd 3822, 92109 [-117.25317,32.7852,0] 23/3/14 19:41
6UK F000 Camino de la Reina 663, 92108 [-117.15991,32.76641,0] 23/3/14 19:41
6TK Z247 Alvarado Rd 6329, 92120 [-117.06368,32.77833,0] 23/3/14 19:41
6UK E953 Mission Center Ct 7820, 92108 [-117.15555,32.77348,0] 23/3/14 19:41
6RF N728 Columbia St 2688, 92103 [-117.17116,32.73238,0] 23/3/14 19:41
6RF N708 Sunset St 2638, 92110 [-117.19451,32.75549,0] 23/3/14 19:41

Table 7 Region Clustering for car2go San Diego

Region Zip Codes
1 92101, 92102, 92134, 92132
2 92103, 92104, 92105
3 92108, 92110, 92116
4 92106, 92107
5 92109

B.5. Ambiguity Sets for Section 5.3

We estimate the correlation coefficient ρikjt between the demand in region i at time k and the demand in

region j at time t. The ambiguity sets F1 and F2 are formulated as

F1 =


P∈P0(RNT )

EP(d) =µ

EP

(
(dit−µit)2

)
≤ σ2

it, ∀i∈ [N ], t∈ [T ]

EP

((∑t

l=k 1′(dl−µl)
)2)≤ γ2

kt, ∀k, t∈ [T ], k≤ t

EP ((dik−µik) (djt−µjt))≤ φ2
ikjt, ∀(i, k, j, t)∈ {(i, k, j, t)|ρikjt ≥ 0.5}

P
(
d∈

(
d, d̄

))
= 1


,

and

F2 =


P∈P0(RNT )

EP(d) =µ

EP

(
(dit−µit)2

)
≤ σ2

it, ∀i∈ [N ], t∈ [T ]

EP

((∑t

l=k 1′(dl−µl)
)2)≤ γ2

kt, ∀k, t∈ [T ], k≤ t

EP ((dik−µik) (djt−µjt))≤ φ2
ikjt, ∀i, j ∈ [N ], k, t∈ [T ]

P
(
d∈

(
d, d̄

))
= 1


.
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