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Optimal routing solutions based on deterministic models usually fail to deliver promised on-time services

in an uncertain real world, which can lead to the loss of customers and revenue. We study a vehicle rout-

ing problem with time windows (vrptw) toward the end of mitigating the risk of late customer arrivals as

much as possible when travel times are based on empirical distributions. To prevent overfitting, we pro-

pose a distributionally robust optimization model that uses a Wasserstein distance–based ambiguity set to

characterize ambiguous distributions that are close to the empirical distribution. Our model minimizes the

decision criterion regarding delays, termed the service fulfillment risk index (sri), while limiting budgeted

travel costs. The sri accounts for both the late arrival probability and its magnitude, captures the risk and

ambiguity in travel times, and can be evaluated efficiently in closed form. Under the Wasserstein distance–

based ambiguity, the closed-form solution reduces the vrptw of interest to the problem under empirical

travel times where all deadlines are advanced by some Wasserstein distance–related durations. To solve the

problem, we develop an exact branch-and-cut approach and a variable neighborhood search meta-heuristic

algorithm, and explore their speedup strategies. The effectiveness of these algorithms is established by exten-

sive computational studies. In particular, our solution greatly improves on-time arrival performance with

only modest increases in expenditures compared to the deterministic solution. Finally, our sri also performs

better during out-of-sample simulations than do the canonical decision criteria of lateness probability and

expected lateness duration.
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1. Introduction

The Vehicle Routing Problem with Time Windows (vrptw) involves planning and scheduling a

set of vehicle routes to deliver goods or individuals to, or collect them from, customer locations—

subject to vehicles’ capacity constraints and customers’ time window requirements. Such routing

aims to reduce operational costs and/or improve service quality. The vrptw family has broad

applications in transportation and logistics; examples include express delivery, bus routing and

scheduling, and waste collection.

Given the uncertain nature of travel times—especially in congested urban areas—solutions to

deterministic vrptw models usually fail, in the execution phase, to deliver their promised on-time

service. To model uncertain travel times in the planning phase, traditional stochastic programming

employs distribution functions, which typically cannot be obtained exactly from observations,

whereas robust optimization paradigms rely on the uncertainty set of outcomes, which tend to be

overly conservative. In contrast, the recently developed distributionally robust optimization can

incorporate empirical distributions, permitting distributional ambiguity to avoid overfitting, and

can improve out-of-sample performance compared to optimizing over empirical distributions.

Classical vrptw models usually minimize travel costs. Although costs are reduced, compro-

mised service quality can lead to a loss of customers and hence of revenues in the long term.

With increasingly fierce competition in the contemporary market, decision makers might prefer

to increase their expenditures on improving service quality and expanding market share. In order

to maximize service quality, existing publications minimize the sum of late arrival probabilities at

customer locations (see e.g. Adulyasak and Jaillet 2015). Yet this lateness probability criterion does

not account for the magnitude of lateness, and its non-convexity renders computations difficult.

In articulating service loss, we introduce the Service Fulfillment Risk Index (sri), which accounts

not only for the late arrival probability but also for its magnitude. In addition, this index considers

the distributional ambiguity of uncertain travel times, constrained by their Wasserstein distance,

with reference to the empirical distribution.

Related literature

Since its introduction by Dantzig and Ramser (1959), the Vehicle Routing Problem (vrp) has

received considerable interest in both academia and industry (e.g., Golden et al. 2008, Laporte

2009, Baldacci et al. 2010, Toth and Vigo 2014). One solves this problem to determine min-cost

delivery routes—subject to vehicle capacity constraints—from a depot to a set of geographically

dispersed customers. The vrp reduces to the Traveling Salesman Problem (tsp) when only one

(uncapacitated) vehicle is considered. The vrp with Time Windows (vrptw) involves the addi-

tional requirement that customer services must start within prescribed time windows (Cordeau
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et al. 2002, Baldacci et al. 2012). A variant of vrp with flexible time windows, with penalties for

servicing outside those windows, is studied by Taş et al. (2014b). If only the deadlines are imposed,

then the vrptw reduces to the vrp with Deadline (vrpd) and the tsp with Time Windows

(tsptw) reduces to the tsp with Deadline (tspd). Extensive studies have examined the vrptw

with deterministic travel times, and various heuristic and exact algorithms have been proposed

(see e.g. Lau et al. 2003, Jepsen et al. 2008, Baldacci et al. 2011, Vidal et al. 2012, Vidal et al.

2014, Pecin et al. 2017). However, situations with uncertain travel times have received relatively

little attention (Oyola et al. 2016, Gendreau et al. 2016).

In stochastic vrptw, the distributions of travel times are assumed to be fully known. Most

previous work focuses on the tspd (Kao 1978, Verweij et al. 2003), the vrpd (Laporte et al.

1992, Kenyon and Morton 2003), or the vrp with “soft” time windows, where services commence

immediately upon arrivals and poor service ensues when arrivals occur outside the time windows

(Taş et al. 2013, 2014a). For a stochastic vrpd, Laporte et al. (1992) develop a chance-constrained

model to minimize operational costs while bounding the probability of late return; they demonstrate

that the chance constraint can be rewritten as a deterministic constraint when travel times are

normally distributed. These authors also study another model that minimizes the sum of travel and

lateness penalty costs. A branch-and-cut approach is developed to solve these models. Kenyon and

Morton (2003) propose models for the stochastic vrpd with two alternative objectives: minimizing

the expected return time and maximizing the probability of an on-time return. They develop two

branch-and-cut algorithms: the first solves the models optimally when the sample space is discrete

and small; the second, for larger instances, yields suboptimal solutions via a sampling technique.

Using sample average approximation, Verweij et al. (2003) efficiently solve a stochastic tspd

by combining the Benders decomposition with branch-and-cut techniques. For a vrp with soft

time windows under Gamma distributions of arc travel times, Taş et al. (2014a) develop a branch-

and-price algorithm to minimize the operational cost and penalty cost incurred by time window

violations. Errico et al. (2018) propose a chance-constrained model for the vrp with hard time

windows and a branch-and-price-and-cut algorithm. Although these authors consider stochastic

service times, their approach could be extended to handle stochastic travel times. In light of the

scalability limitations of exact algorithms, several heuristics have been proposed for the stochastic

vrptw; these include, among others, saving-based constructive algorithms (Lambert et al. 1993)

and tabu search (Russell and Urban 2008, Taş et al. 2013, Ehmke et al. 2015).

In robust vrptw, travel times are given by an uncertainty set of outcomes. Lee et al. (2012)

use the “budgeted” uncertainty set of Bertsimas and Sim (2004) to characterize travel times in

a robust vrpd, where no time window should be violated in any scenario occurring within the

uncertainty set, before developing a branch-and-price algorithm to solve the problem. Agra et al.



Zhang, Zhang, Lim, & Sim: Robust Data-Driven Vehicle Routing
4 Article Accepted by Operations Research; manuscript no. OPRE-2018-11-676

(2013) study a robust vrptw and propose two models that are solved, respectively, by extending

the resource and path inequalities from the deterministic to the robust optimization context and

by developing a branch-and-cut algorithm and column-and-row generation.

Jaillet et al. (2016) propose using the Riskiness Index (ri) of Aumann and Serrano (2008) as a

more reasonable decision criterion to evaluate the impact of late arrivals because it considers both

the probability and magnitude of lateness—thereby ensuring that, the greater the tardiness, the

lower the chance of it occurring. However, this approach is tractable only when arrival times can be

expressed as an affine function of independently distributed factors; that requirement excludes the

typical vrptw problem, in which arrival times are piecewise linear functions of travel times. Hence

Zhang et al. (2019a) replace the ri with the Essential Riskiness Index (eri), which can be applied

to the vrptw when evaluated using empirical travel times. Yet, despite the novelties in their paper,

Zhang et al. (2019a) obtain optimal solutions only for small-scale tsptw problems (i.e., for those

involving fewer than 15 nodes). The authors also propose a mean-variance distributionally robust

model that results in a binary semidefinite optimization problem, which they are unable to solve

within an acceptable computational time.

Contributions

We summarize our main results and contributions below.

1. New decision criterion: We propose a new decision criterion, termed the Service Fulfillment

Risk Index (sri), which provides the flexibility for the modeler to have differentiated service

level in terms of probabilistic guarantee of on-time delivery.

2. Distributional robustness with respect to empirical travel times: We propose a dis-

tributionally robust model using Wasserstein distance–based ambiguity set to avoid overfitting

to the empirical distribution and improve out-of-sample performance. We are also able to

derive a closed-form solution for evaluating the sri, which is crucial for implementations of

the separation procedures in the branch-and-cut approach and of the meta-heuristic. Under

this ambiguity set, we find that optimizing our vrptw amounts to solving its counterpart

under the empirical distribution when all of the deadlines are advanced by specified durations

related to the Wasserstein metric distance.

3. Improved formulation and enhancement for exact solution: We propose a different

and computationally superior formulation to that of the multi-commodity flow formulation

proposed in Adulyasak and Jaillet (2015) and Zhang et al. (2019a); thus we develop a branch-

and-cut algorithm to solve the model optimally. In leveraging the properties of sri, we also

introduce arc reduction and “warm start” techniques that contribute to solving larger-sized

problems to optimality.
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4. Computational strategies for meta-heuristics: We also develop a meta-heuristic algo-

rithm to solve large-scale instances, a process that benefits from our ability to obtain closed-

form solutions for evaluating the sri. Among other advances, we use the trie data structure to

increase computational efficiency by a factor of 15. This approach yields the same solutions as

the exact algorithm for small instances, and demonstrates the ability to solve large instances.

5. Extensive numerical study: Because we are able to solve larger vrptw problems than

before, we can perform an extensive numerical study to evaluate the out-of-sample performance

of various decision criteria in terms of mitigating the risk of service violations. We also employ

k-fold cross-validation technique to calibrate the Wasserstein distance, resulting in better out-

of-sample performance than that achieved by the traditional sample average approximation

approach. Our proposed sri outperforms the canonical decision criteria of lateness probability

and expected lateness duration. Moreover, if travel times are uncertain then the deterministic

vrptw’s “optimal” solutions tend to perform poorly against even the suboptimal sri-based

solutions that we obtain via the meta-heuristic. This result underscores the importance of the

choice of decision criterion over optimality.

Overview

In Section 2 we model the vrptw under consideration; then, in Section 3, we explain its decision

criterion: our proposed Service Fulfillment Risk Index. The closed-form solution for evaluating the

decision criterion is derived in Section 4. We solve the vrptw by developing an exact branch-and-

cut algorithm in Section 5 and a variable neighborhood search meta-heuristic algorithm in Section

6. Section 7 is devoted to the extensive computational studies. We conclude in Section 8 with a

brief summary of our methods and findings as well as suggestions for future research. Technical

proofs are relegated to EC.1 of the electronic companion.

Notation

We use |A| to denote the cardinality of set A; boldface lowercase letters represent vectors. The

transpose of x is denoted by x>, and we use a tilde (˜) to represent uncertain parameters. Uncer-

tainty is modeled via a state space Ω and a σ-algebra F of events on Ω. We use R, N, and V to

denote the spaces of (respectively) real numbers, natural numbers, and real-valued random vari-

ables. Let P(W) represent the set of all probability distributions supported on setW ⊆RI . The true

distribution P of uncertain parameters on (Ω,F) might not be known exactly, but instead resides in

an ambiguity set F such that P∈F . We use P[·] to denote the probability of some event and EP[ṽ]

represents the expectation of ṽ with probability distribution P. Also, we put (x)+ = max{x,0}.
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2. Formulation of the VRPTW

The vrptw is defined on a directed graph G′ = (N ′,A′), where N ′ = {1} ∪ Nc and A′ = {(i, j) |

i, j ∈ N ′, i 6= j} represent the sets of nodes and arcs, respectively. Node 1 corresponds to the

depot where a fleet of m∈N homogeneous vehicles with capacity Q∈R+ are based, and nodes in

Nc = {2,3, . . . , n} represent the set of customer locations. Each node i ∈ N ′ is associated with a

level of demand qi ∈ R+ (q1 = 0) and a time window [τ i, τ i], where τ i ∈ R+ and τ i ∈ R+ ∪ {+∞}

prescribe (respectively) the earliest time and the latest time (i.e., the deadline) for starting the

service. In particular, we let τ 1 = 0 and let τ 1 represent the deadline for returning to the depot.

When a vehicle arrives at node i ∈Nc earlier than τ i, it waits (at no cost) and starts the service

at time τ i. However, if the arrival is later than τ i then the service will still be rendered but will

be deemed poor. For each arc (i, j) ∈A′, the travel cost is denoted by cij ∈R+ and the uncertain

travel time by z̃ij ∈ V+. We assume (without loss of generality) that, for (i, j)∈A, the service time

at node i∈Nc is included in z̃ij.

The vrptw requires designing at most m a priori routes to service all customers. In addition,

the following four constraints must be satisfied. (i) Each vehicle, if used, departs and terminates

at the depot but does not visit the depot in between; (ii) vehicle capacity is not exceeded at any

location; (iii) each customer is serviced exactly once and by only one vehicle; and (iv) the total

travel cost is within a budget B ∈R+. The objective is to maximize the provision of on-time services

to customers. We shall later articulate the form of this objective in more detail.

Feasible route set based on extended graph

To provide a mathematical formulation without a vehicle index, we makem “copies” of the depot for

vehicles: Nd = {n+ 1, n+ 2, . . . , n+m}. We then create an extended directed graph as G = (N ,A),

where N = {1} ∪Nc ∪Nd and A=Ao ∪Ac ∪Ad with Ao = {(1, j) | j ∈Nc}, Ac = {(i, j) | i, j ∈Nc,

i 6= j}, and Ad = {(i, j) | i∈Nc, j ∈Nd}.

In the extended graph, the attributes of nodes in Nd—namely, qi = 0, τ i = 0, and τ i = τ 1 for

i ∈Nd—are copied from node 1. In case the earliest time or the deadline is not clearly prescribed

for some node i ∈ N , we let τ i = 0 or τ i = +∞, respectively. Thus the node sets with explicit

earliest time and deadline requirements are

N = {i∈N | τ i > 0} and N = {i∈N | τ i <+∞}.

We analogously define the travel costs and times across arcs in Ad as (respectively) cij = ci1 and

z̃ij = z̃i1 for i ∈Nc and j ∈Nd. For notational convenience, we use (i, j) and a interchangeably to
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represent an arc in A. Given any subset H⊆N of nodes, the sets of their outgoing and incoming

arcs can be written as

δ+(H) = {(i, j)∈A | i∈H, j ∈N \H} and δ−(H) = {(j, i)∈A | i∈H, j ∈N \H},

respectively. When H is a singleton, we use the notation δ+(i) and δ−(i) instead of δ+({i}) and

δ−({i}). By definition of the graph, we have δ+(i) = ∅ for i∈Nd and δ−(1) = ∅.

We represent a feasible routing solution by the binary decision variables x = (xa)a∈A, where

xa = 1 if arc a∈A is traversed by some vehicle (and xa = 0 otherwise). More specifically, we define

the feasible region of x by

X =


x∈ {0,1}|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
a∈δ+(i)

xa =
∑

a∈δ−(i)

xa = 1 ∀i∈Nc,∑
a∈δ+(1)

xa ≤m,∑
a∈δ−(i)

xa ≤ 1 ∀i∈Nd,

∑
a∈δ+(H)

xa ≥
⌈∑

i∈H qi

Q

⌉
∀H⊆Nc, |H| ≥ 2


. (1)

The first constraint in (1) ensures that every customer i ∈ Nc is serviced exactly once, and the

second limits the number of available vehicles. By the third constraint, at most one vehicle returns

to node i ∈ Nd. The last constraint is that on capacity and “subtour elimination”, which is also

referred to as “rounded capacity inequalities” (Lysgaard et al. 2004).

Problem formulation

Given a vehicle routing solution x ∈ X , we can extract the corresponding route(s) in the form of

node sequence(s). Consider a route (1, i2, i3, . . . , iκ−1iκ, . . . , iν−1, iν) that visits node l= iκ and ends

at node iν ∈Nd. As regards the partial route to l, we define the sets of visited nodes and traversed

arcs as

Nl(x) = {1, i2, i3, . . . , iκ−1, l} and Al(x) = {(1, i2), (i2, i3), . . . , (iκ−1, l)},

respectively, and define the set of traversed arcs from an upstream node k ∈Nl(x) to l as

Akl(x) =Al(x) \Ak(x).

Proposition 1 Given a routing solution x ∈ X and a realization z of travel times z̃, the service

start time for each node l ∈N is determined by the function

tl(x,z) = max
k∈Nl(x)

{
τk +

∑
a∈Akl(x)

za

}
, (2)
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Proof: See EC.1.1 of the electronic companion.

Before proceeding, we discuss a possible misconception about the expected service start time.

Deterministic models seek to capture actual travel times by mean travel times, µ = EP[z̃] (Toth

and Vigo 2014). One could obtain the service start time tl(x,µ) at node l ∈N and then regard it

as the mean value of the uncertain service start time, EP[tl(x, z̃)]. However, Proposition 2 asserts

that this equivalance does not hold in general. We illustrate the issue via an example in EC.2 of

the electronic companion.

Proposition 2 For a node l ∈N along one of the routes corresponding to x, the service start time

evaluated via mean travel times underestimates the mean value of the uncertain service start time.

That is, tl(x,µ)≤EP[tl(x, z̃)].

Proof: Observe from Proposition 1 that tl(x,z) is a convex piecewise affine function in z. By

virtue of Jensen’s inequality, we have tl(x,EP[z̃])≤EP[tl(x, z̃)]. �

We next introduce the delay function at node l ∈N as

ξl(x,z) = tl(x,z)− τ l; (3)

hence lateness occurs if and only if ξl(x,z)> 0. Since travel times z̃ are uncertain, it follows that

the delay ξl(x, z̃) is also uncertain.

To help decision makers design a routing plan that provides on-time services as efficiently as

possible, in Section 3 we introduce the decision criterion ργl(ξl(x, z̃)) : V 7→ [0,+∞]; this criterion

evaluates the service fulfillment risk at node l ∈N in terms of the prescribed service level associated

with parameter γl ∈ [0,1]. We then propose the following model for the vrptw:

min
∑
l∈N

ργl(ξl(x, z̃))

s.t. c>x≤B,

x∈X .

(4)

Our model minimizes the sum of the service fulfillment risk measures over all nodes with deadlines

while ensuring that travel costs do not exceed the prescribed budget B. The goal is effective

mitigation of the service fulfillment risk via a modest increase in budget over the minimum cost,

thereby gaining market share and improving revenue in the long term. The choice of a decision

criterion is obviously critical, as we explain in Section 3.

Observe that the delay function ξl(x,z) is convex piecewise affine in z and, in contrast to the

“lifted variables” approach of Zhang et al. (2019a), here the function is not convex in the decision
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variables x. In Section 5 we offer a mixed-integer linear reformulation. In EC.3 of the electronic

companion we propose an alternative multi-commodity flow formulation—based on Adulyasak and

Jaillet (2015) and Zhang et al. (2019a)—that is compact and mixed-integer linear in form and can

be solved by a Benders decomposition algorithm. Yet we show in Section 7 that our formulation

(4), when solved by way of a branch-and-cut algorithm, is more computationally efficient than the

multi-commodity flow formulation.

3. Service Fulfillment Risk Index

Lateness probability is perhaps the most natural decision criterion to use when measuring service

fulfillment risk in routing optimization (Kenyon and Morton 2003, Adulyasak and Jaillet 2015).

Despite its wide applications, this criterion may be inadequate because it does not capture the

extent of tardiness. Furthermore, the lateness probability is a non-convex function and so is more

difficult to optimize efficiently. The alternative criterion of expected lateness duration circumvents

these issues, but it may not sufficiently reduce the probability of lateness (Verweij et al. 2003, Taş

et al. 2014a).

To address these issues collectively, Jaillet et al. (2016) propose a decision criterion—based on

the Riskiness Index of Aumann and Serrano (2008)—as follows:

ρR(ξ̃) = min
{
α≥ 0 | sup

P∈F
EP[exp(ξ̃/α)]≤ 1

}
.

The ri has several salient properties. For instance, it incorporates penalties for both the probability

of tardiness and the magnitude of violation. Yet it admits a tractable formulation only if the

underlying random variable ξ̃ can be expressed as affine combinations of independently distributed

random variables, a requirement that is unsuitable in the case of empirical travel times and for

modeling hard time window constraints. To resolve these issues, Zhang et al. (2019a) propose the

following Essential Riskiness Index:

ρE(ξ̃) = min
{
α≥ 0 | sup

P∈F
EP[max{ξ̃,−α}]≤ 0

}
.

We extend this eri by incorporating a parameter for differentiated service guarantees offered to

customers, which gives modelers the flexibility to customize service levels in terms of probabilistic

guarantees of on-time delivery. Our new decision criterion is defined formally as follows.

Definition 1 (Service Fulfillment Risk Index, sri) Given a random delay denoted by the random

variable ξ̃ ∈ V with probability distribution P and a service level γ ∈ [0,1], we define the sri, or

ργ(ξ̃) : V 7→ [0,+∞], as

ργ(ξ̃) = min
{
α≥ 0 | F-cvarγ(max{ξ̃,−α})≤ 0

}
. (5)
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Here we follow the conventions that min∅= +∞ and F-cvarγ(ṽ) : V 7→R is the worst-case Con-

ditional Value-at-Risk (cvar) over the ambiguity set F of distribution P:

F-cvarγ(ṽ) = min
β

{
β+

1

1− γ
sup
P∈F

EP[(ṽ−β)+]

}
. (6)

Observe that if γ = 0 then β :=−∞ is an optimal solution to the problem underlying F-cvar0(ṽ),

in which case F-cvar0(ṽ) = supP∈F EP[ṽ]. Thus the sri is reduced to the eri when γ = 0. This result

indicates that the sri is more “expressive” than is the eri—although this advantage comes at the

expense of introducing another decision variable β, which might well complicate the computation.

Next we show that sri does have a concise and equivalent representation that is independent of β.

Theorem 1 The sri can be equivalently represented as

ργ(ξ̃) = min
{
α≥ 0 | sup

P∈F
EP[(ξ̃+α)+]≤ (1− γ)α

}
. (7)

Proof: See EC.1.2 of the electronic companion.

Theorem 1 implies that sri and eri are similar from a computational viewpoint. The sri also

has several desirable properties, as enumerated in our next proposition.

Proposition 3 For all ξ̃, ξ̃1, ξ̃2 ∈ V, the following statements hold.

(i) Risk-free fulfillment: ργ(ξ̃) = 0 if and only if P[ξ̃ ≤ 0] = 1 for all P∈F .

(ii) Infeasible fulfillment: If F-cvarγ(ξ̃)> 0, then ργ(ξ̃) = +∞.

(iii) Convexity: For any λ∈ [0,1], we have ργ(λξ̃1 + (1−λ)ξ̃2)≤ λργ(ξ̃1) + (1−λ)ργ(ξ̃2).

(iv) Violation bounds:

P[ξ̃ > ργ(ξ̃)φ]≤ 1− γ
1 +φ

for all φ≥ 0 and P∈F .

Proof: See EC.1.3 of the electronic companion.

Under risk-free fulfillment, the sri is equal to 0 (its best possible value) if and only if the arrival

time is almost surely earlier than the deadline for all probability distributions in the ambiguity set.

Infeasible fulfillment asserts that a route is infeasible if F-cvarγ(ξ̃) > 0—that is, if the average

service start time over the (1−γ) tail of the worst-case distribution exceeds the deadline (Rockafel-

lar and Uryasev 2000). Convexity is computationally desirable in optimization. Finally, violation

bounds yield insights into the probability bounds of the event, namely that a service start time

exceeds the deadline plus any duration. In particular, if φ = 0 and γ > 0 then we can stipulate

this nontrivial upper bound on the lateness probability: P[ξ̃ > 0]≤ 1− γ for all P∈F ; in contrast,
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eri provides only the trivial bound P[ξ̃ > 0]≤ 1 (Zhang et al. 2019a). So as to offer differentiated

services for customers by minimizing the sum of their sris in (4), the decision maker could assign

a greater value of γl to a relatively more important customer l ∈N .

Example 1 We illustrate the different decision criteria for several uncertain delays with two-point

distributions. Table 1 reports the distributions and values of decision criteria, where M denotes

some large number and we let γ = 0.1 for sri. We observe that the lateness probability criterion is

indifferent between the first two routes despite their differing magnitudes of lateness. The expected

lateness duration criterion is indifferent between Routes 1 and 3, which have different lateness

probabilities. Both eri and sri provide clear rankings of the first three routes. For Route 4, however,

sri identifies its poor performance and deems it infeasible (owing to the infeasible fulfillment

property in Proposition 3) whereas eri continues to deem it feasible. We do not report the behavior

of ri because it is similar to that of eri in this example.

Table 1 Comparison of decision criteria for several uncertain delays

Route
Uncertain delay Decision criteria

Realization Probability
Lateness

probability
Expected

lateness duration
eri

sri
(γ = 0.1)

1
−M 0.95

0.05 0.5 0.53 0.5910 0.05

2
−M 0.95

0.05 1 1.05 1.1820 0.05

3
−M 0.9

0.1 0.5 0.56 0.635 0.1

4
−M 0.1

0.9 9 90.00 +∞10 0.9

Wasserstein distance–based ambiguity set

The purpose of the ambiguity set F in sri is to avoid overfitting solutions to the empirical dis-

tributions. The cross-moment ambiguity set studied by Zhang et al. (2019a) leads to a computa-

tionally impractical binary semidefinite optimization formulation for their tsptw. The alternative

φ divergence–based ambiguity set would require that the true distribution is absolutely continuous

with respect to the empirical distribution, thus ignoring any travel time scenario that has not

already been observed (cf. Ben-Tal et al. 2013, Gao and Kleywegt 2016). Here we investigate a

Wasserstein distance–based ambiguity set (WDAS) that circumvents these issues collectively (see

e.g., Gao and Kleywegt 2016, Gao et al. 2017, Chen et al. 2018, Mohajerin Esfahani and Kuhn
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2018, Zhao and Guan 2018). We show that this approach need not increase the computational

complexity of our vrptw relative to its counterpart without distributional ambiguity.

In the real world, a decision maker can never know the exact distribution P of travel times z̃.

However, the historical data (ẑω)ω∈Ω may be readily accessible; here ẑω denotes the empirical travel

times in scenario ω ∈Ω, where Ω = {1,2, . . . ,N} is the index set. We can use the data to induce an

empirical distribution P†, or the discrete uniform distribution over the data. More precisely,

P†[z̃† = ẑω] =
1

N
∀ω ∈Ω,

where z̃† denotes the empirical travel times.

Suppose the true distribution P lies in a Wasserstein ball of radius θ ∈ R+ that is centered at

the empirical distribution P†. Then the Wasserstein ambiguity set is defined as

F(θ) =

P∈P(W)

∣∣∣∣∣∣ z̃ ∼ P, z̃† ∼ P†,

dW (P,P†)≤ θ

 . (8)

This paper considers the type-1 Wasserstein distance, dW : P(W)× P(W) 7→ [0,+∞), which we

define as

dW (P,P†) = inf
P̄

EP̄
[
‖z̃− z̃†‖p

]
s.t. (z̃, z̃†)∼ P̄,

z̃ ∼ P,

z̃† ∼ P†,

P̄
[
(z̃, z̃†)∈W ×W

]
= 1.

(9)

In this definition, P̄ corresponds to the joint distribution of z̃ and z̃†; P and P† are the marginal

distributions of P̄ on (respectively) z̃ and z̃†; ‖·‖p represents a polynomial norm for which p≥ 1;

and W = {z | z ≥ z} is the support set under consideration (here z represents the lower bounds of

z).

The Wasserstein distance is a “statistical” distance between two probability distributions P

and P†, and it can be interpreted as the minimum total distance (with respect to the `p norm)

for transporting the probability mass from P† to P. Hence the ambiguity set F(θ) contains all

discrete and continuous probability distributions that are close to the empirical distribution. It is

known that, under some mild assumptions, an appropriately chosen θ—as a function of the number

N of historical data and some ε ∈ (0,1)—would guarantee (with confidence 1− ε) that the true

distribution resides in F(θ). Moreover, such a choice of θ would tend to zero as N tends to infinity,

indicating that the empirical distribution converges to the true distribution asympotically. We refer

interested readers to Mohajerin Esfahani and Kuhn (2018) for additional details.
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4. Evaluating the SRI in Closed Form

Regarding the uncertain delay at node l ∈N under a given routing solution x∈X , we are interested

in evaluating its sri, or ργl(ξl(x, z̃)). According to Theorem 1, we can write

ργl(ξl(x, z̃)) = min αl

s.t. sup
P∈F(θ)

EP[(ξl(x, z̃) +αl)
+]≤ (1− γl)αl,

αl ≥ 0.

(10)

This formulation is recognized as a semi-infinite programming problem that is generally intractable

(Mohajerin Esfahani and Kuhn 2018). Yet we can use duality theory to exploit this problem’s

structure and thus derive its tractable reformulation, as the next theorem shows.

Theorem 2 We have ργl(ξl(x, z̃)) = ρ̄γl(ξl(x, z̃)) + θ
1−γl
|Al(x)|(p−1)/p, where ρ̄γl(ξl(x, z̃)) is the

optimal value of the optimization problem

ρ̄γl(ξl(x, z̃)) = min αl

s.t.
1

N

∑
ω∈Ω

(
ξl(x, ẑω) +

θ

1− γl
|Al(x)|(p−1)/p +αl

)+

≤ (1− γl)αl,

αl ≥ 0.

(11)

Proof: See EC.1.4 of the electronic companion.

Note that problem (11) can easily be linearized and then solved as a linear optimization problem.

The closed-form evaluation

We shall derive a closed-form solution for problem (11). For notational convenience, we denote

the order statistics of the empirical delays by (ξl(x, ẑ(ω)))ω∈Ω so that ξl(x, ẑ(1))≥ ξl(x, ẑ(2))≥ · · · ≥

ξl(x, ẑ(N)). Using the result of Uryasev et al. (2010), we can calculate the cvar of the delay under

the empirical distribution as

cvarγl(ξl(x, z̃
†)) =

b(1−γl)Nc∑
ω=1

ξl(x, ẑ(ω))

(1− γl)N
+

(
1− b(1− γl)Nc

(1− γl)N

)
ξl(x, ẑ(b(1−γl)Nc+1)), (12)

where we put
∑0

ω=1 ξl(x, ẑ(ω)) = 0 and ξl(x, ẑ(N+1)) = 0. We are now ready to present the main

result.

Theorem 3 We have ργl(ξl(x, z̃)) = +∞ if

cvarγl(ξl(x, z̃
†))>− θ

1− γl
|Al(x)|(p−1)/p. (13)
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Otherwise,

ργl(ξl(x, z̃)) = max

{
max

i∈{1,2,...,b(1−γl)Nc}

{∑i

ω=1 ξl(x, ẑ(ω)) + θN |Al(x)|(p−1)/p

(1− γl)N − i

}
,

θ

1− γl
|Al(x)|(p−1)/p

}
. (14)

Proof: See EC.1.5 of the electronic companion.

Given the empirical delays (ξl(x, ẑ(ω)))ω∈Ω and the number |Al(x)| of traversed arcs, Theorem 3

reveals that we can evaluate the sri for node l ∈N by developing an efficient algorithm that first

sorts the empirical delays and then checks their feasibility by calculating the cvar. If condition (13)

is satisfied, then we assert that the route is infeasible. Otherwise, we simply evaluate formula (14)

to obtain the value of the sri but without needing to solve problem (11). The computational

complexity comes from sorting and is therefore of order O(N logN).

Case of the `1-norm Wasserstein metric

When we use the sri with the WDAS as the decision criterion, the vrptw (4) can be written as

Z = min
∑
l∈N

αl

s.t. sup
P∈F(θ)

EP[(ξl(x, z̃) +αl)
+]≤ (1− γl)αl ∀l ∈N ,

c>x≤B,

x∈X ,

αl ≥ 0 ∀l ∈N .

(15)

So when θ= 0, the Wasserstein distance–based ambiguity set shrinks to the singleton of the empiri-

cal distribution; in this case, problem (15) is reduced to a sample average approximation problem as

min
∑
l∈N

αl

s.t.
1

N

∑
ω∈Ω

(ξl(x, ẑω) +αl)
+ ≤ (1− γl)αl ∀l ∈N ,

c>x≤B,

x∈X ,

αl ≥ 0 ∀l ∈N .

(16)

We now uncover a hidden relationship between these two problems.

Theorem 4 Let the `1 norm be used to define the Wasserstein distance in (9), and suppose there is

no deadline requirement for the depot (i.e., τ 1 = +∞). Then the vrptw (15) under the Wasserstein

distance–based ambiguity set with some θ≥ 0 gives the same solution as the vrptw (16) under the

empirical distribution—provided the deadline τ l is modified as τ l− θ
1−γl

for all l ∈N .
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Proof: See EC.1.6 of the electronic companion.

This theorem exposes the behavior of the WDAS in an interesting situation. Using this result,

a decision maker would manually modify the deadline τ l as τ l − θ
1−γl

in the planning phase so

that, in the execution phase, the real deadline is not violated if the service start time exceeds the

planned deadline for a duration of less than θ
1−γl

. We therefore interpret θ
1−γl

as a safety time

buffer that is increasing in the service level γl and in the radius θ of the Wasserstein ball. From

the computational standpoint, Theorem 4 indicates that solving the vrptw in this case is as easy

as solving the problem under the empirical distribution—and with the advantage that pruning the

solution space could then accelerate the optimization process.

5. Exact Algorithm

We first propose the following mixed-integer linear reformulation of Problem (4):

min
∑
l∈N

ηl

s.t.
∑

a∈Al(y)

(xa− 1)ργl(ξl(y, z̃)) + ργl(ξl(y, z̃))≤ ηl ∀y ∈X , l ∈N : ργl(ξl(y, z̃))<+∞,∑
a∈Al(y)

(xa− 1) + 1≤ 0 ∀y ∈X , l ∈N : ργl(ξl(y, z̃)) = +∞,

c>x≤B,

x∈X ,

η ∈R|N |+ .

(17)

Here, the η serve as epigraphical decision variables for the sris. The optimality and feasibility

of sri are respectively guaranteed by the first two constraints. More specifically, for any vehicle

routing solution y ∈ X , if the sri associated with node l ∈ N is finite then we pose the first

constraint in (17). Observe that its left-hand side (LHS) is equal to the sri, ργl(ξl(y, z̃)), if a route

determined by x traverses the partial route (from node 1 to l ∈N ) determined by y. In this case,

ηl = ργl(ξl(x, z̃)) = ργl(ξl(y, z̃)). Otherwise, the LHS value is nonpositive and so the constraint is

redundant. Now suppose that the sri of node l ∈N is infinite; then the partial route from node 1

to l and determined by y is infeasible. Hence we add the second constraint in order to rule out the

routes passing through the infeasible partial route.

We can also leverage the properties of sri to posit the following inequalities.

Proposition 4 The constraints in (18) are valid for problem (17):

T =

x∈ {0,1}|A|
∣∣∣∣∣∣∣∣
∃v ∈R|N |+ :

τ i ≤ vi ≤ τ i ∀i∈N ,

vj − vi ≥ µijxij + (1−xij)(τ j − τ i) ∀(i, j)∈A

 . (18)
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In this expression, the decision variable vi represents the “service start time” at node i∈N in the

deterministic world where travel times are given as empirical means: µ=N−1
∑

ω∈Ω ẑω.

Proof: See EC.1.7 of the electronic companion.

We remark that the constraints in (18) are not necessarily valid under classical decision criteria

(e.g., lateness probability, expected lateness duration) because those criteria do not exhibit the

infeasible fulfillment property mandated (in Proposition 3) by our sri.

Branch-and-cut

The reformulation (17) has exponentially many constraints, so a natural way to solve it is via a

branch-and-cut approach.

We add the first two sets of constraints in (17) dynamically in a branch-and-cut fashion. Specif-

ically, we begin by ignoring these constraints. Whenever an integer solution x ∈ X is found, the

violated constraints are separated and added; the optimal solution is obtained if no such constraint

is identified. In the implementation, these constraints are added as lazy constraints through the

callback function of general-purpose solvers such as the IBM ILOG CPLEX.

Similarly, the rounded capacity inequalities (RCI) in set (1) are also added in a branch-and-

cut manner. Although constraint (18) helps eliminate subtours, they cannot ensure that capacity

constraints are satisfied. Furthermore, rounded capacity inequalities can accelerate this procedure

since they apply also to fractional solutions. In the implementation, the RCI are separated based

on the commonly used heuristic procedure of Lysgaard et al. (2004) and then added dynamically

via the user-cut callback function. Yet the heuristic’s nature is such that some necessary RCI might

be missed. So when an integer solution is obtained, the RCI are checked before considering the

optimality and feasibility cuts.

Arc reduction

The pre-processing technique of arc reduction, which is frequently used in deterministic vrptw

(Cordeau 2006), identifies and eliminates time window–infeasible arcs beforehand. Under uncer-

tainty, however, it cannot be applied to vrptw with such classical decision criteria as the probabil-

ity (Kenyon and Morton 2003, Adulyasak and Jaillet 2015) and magnitude (Verweij et al. 2003, Taş

et al. 2014a) of lateness. Thanks to the property of infeasible fulfillment specified in Proposition 3,

the arc reduction technique is viable under our sri decision criterion.
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Proposition 5 The following arc reduction constraints are valid:

xjl = 0 ∀l ∈N , (j, l)∈A : cvarγl

(
max{τ j + z̃†jl, τ l}− τ l +

θ

1− γl

)
> 0;

xij +xjl ≤ 1 ∀l ∈N , (i, j), (j, l)∈A : cvarγl

(
max{max{τ i + z̃†ij, τ j}+ z̃†jl, τ l}− τ l +

θ

1− γl

)
> 0.

Proof: See EC.1.8 of the electronic companion.

The first and second constraints in Proposition 5 correspond to reducing one and two consecutive

arcs, respectively. Although the result can be further extended to more consecutive arcs, we use

only these two constraints in our computational study because they are sufficiently strong.

Warm start

We employ the meta-heuristic described in Section 6 so that we can quickly find a suboptimal—or

perhaps even optimal—solution to (17) and input it as an initial solution for the branch-and-cut

algorithm.

6. Meta-heuristic Algorithm

Here we describe a meta-heuristic framework that can be used to solve large-scale instances. This

framework is used mainly to evaluate the performance of our proposed decision criterion.

Variable neighborhood search

The decision criterion sri is applicable to any meta-heuristic algorithm. In this study, we use the

variable neighborhood search (vns) algorithm to demonstrate the application; we adopt the vns

because of its success in solving various vrp variants (Bräysy 2003, Kytöjoki et al. 2007, Wei et al.

2015, Lim et al. 2017). The framework is formalized as Algorithm 1.

During the entire search process, all solutions are always feasible in terms of the capacity and

the sri—although they can violate the cost budget. We therefore define and use a “penalized

objective” for the solution x: ∑
l∈N

ργ(ξl(x, z̃)) +M(c>x−B)+,

where M is a sufficiently large number. The vns starts from an initial solution constructed by the

cheapest insertion method, which iteratively inserts the customers one by one in the best place

with the least objective value. In the second loop, a neighbor solution x′ is first generated by a

defined neighborhood structure and is then improved by the local search procedure. If the new

solution x′′ is better than the incumbent x, then the search moves to x′′ and reverts to the first
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Algorithm 1 Variable Neighborhood Search

Construct an initial solution x. Initialize the best solution as x∗ :=x.

while the prescribed computational time limit is unreached do

Initialize the index, h := 0.

while h<H do

Set h := h+ 1.

Obtain a new solution x′ using the hth neighborhood structure on x.

Find a solution x′′ by improving x′ with local search.

if x′′ is better than x then

Set x :=x′′, h := 0.

Update x∗ if x is better.

Generate a solution x using a diversification procedure on x∗.

Output the best solution x∗.

neighborhood structure; otherwise, it continues with the next structure. After all neighborhood

structures are attempted, the starting solution is diversified (as described next) and the next loop

is repeated until the stopping criterion is met.

The local search operators are relocate, which relocates one customer to another position; swap,

which exchanges the positions of two customers; 2-opt, in which a selected sequence of customers

is reversed; and 2-opt*, which interchanges the end parts of two different routes. Neighborhood

structures are based on the block exchange (i.e., exchanging two blocks of consecutive customers),

and a series of H neighborhood structures is then designed. In the hth neighborhood structure,

we perform the block exchange h times, h= 1,2, . . . ,H. Diversification follows the ruin–reconstruct

approach, which first randomly removes several customers and then rebuilds a full solution with

the insertion method. This vns is based on our previous successful implementations, which can

obtain several best-known solutions for the studied vrp variants (Zhang et al. 2015, Wei et al.

2015). We refer interested readers to those papers for details.

Acceleration strategy using digital tree

To speed up the computation, we introduce the data structure “digital tree”, also known as the trie,

into our procedure. Trie is an ordered tree data structure first described by De La Briandais (1959),

and it facilitates solving problems that involve time-consuming feasibility checks or calculations

(Wei et al. 2015, Zhang et al. 2015) because it avoids duplicated computation of the same route—an

issue that arises frequently in the search process of meta-heuristic algorithms.
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The trie keeps track of the necessary information regarding each customer on the given route.

Here we record the objective value sri and the empirical service start times. For a newly obtained

route (1, i2, i3, . . . , iκ−1, iκ, . . . , iν−1, iν), before invoking the calculations based on Theorem 3, we

first retrieve the information from the trie. Three cases are distinguished as follows.

� Full route is retrieved: Return the sum of objective values directly.

� Partial route (1, i2, i3, . . . , iκ−1) is identified: Obtain the stored objective values and the empir-

ical service start times for customer iκ−1; then calculate the service start times and objective value

for every customer in (iκ, . . . , iν−1, iν) and store the corresponding information in the trie.

� The route does not exist in the trie: Calculate the information for all customers and store it

in the trie.

The trie helps avoid unnecessary calculations for duplicated full or partial routes; its use is

illustrated in Figure 1. In part (a) of this figure, the current trie stores information on four routes:

(1,2,3,1), (1,2,3,5,1), (1,4,1), and (1,4,5,1). If the new route to be evaluated is (1,2,3,5,1), then

we can retrieve the objective values from the trie directly. For the case when the new route is

(1,2,3,4,1), we can retrieve objective values for nodes in the partial route (1,2,3); after that, we

need only to calculate—based on the retrieved service start times at node 3—the information for

customer 4 and the returning depot 1. Then the computed information is added to the trie, as

shown in Figure 1(b).
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1

1

5
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5

1

1

(a) Store at each node the information 

on SRI and empirical service start times

2

1

3

1

1

5

4

5

1

1
4

1

(b) Retrive the information 

Figure 1 Structure and operation of a trie

7. Computational Studies

We report extensive computational studies to investigate the effectiveness of our decision criterion,

models, and algorithms. Algorithms are coded in C++ and executed on a PC equipped with an

Intel(R) Core(TM) CPU i7-7700 clocked at 3.60 GHz and 32 GB RAM running the Windows 10

operating system. The IBM ILOG CPLEX 12.6.0 is used as the mixed-integer optimization solver.

The input data and source code can be found in the online supplement.
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Instances, methods, and performance metrics

Our experiments employ Solomon’s (1987) widely used instances for vrptw. These instances

involve 100 customers and are grouped into three classes according to the geographical distribution

of customer locations: c (clustered), r (random), and rc (mixed). Only the instances with tight

time windows are used, so there are 29 instances in total.

Since the instances are generated for the deterministic vrptw, we modify the travel times to

incorporate uncertainty. In the basic setting, for each arc a ∈ A we set the mean value µa of the

uncertain travel time z̃a as the deterministic travel time. We assume that z̃a follows an asymmetric

two-point distribution supported on µa− σa/
√

3 and µa +
√

3σa with respective probabilities 0.75

and 0.25; here we generate the standard deviation σa := λaµa for some λa chosen randomly and

uniformly from the interval [0.1,0.5]. The two points of travel times characterize, respectively, the

uncongested and congested situations. We also test several other distributions that are studied in

the literature, including the uniform and triangular distributions as well as correlated distributions

(Adulyasak and Jaillet 2015, Errico et al. 2018). The results and insights based on these distribu-

tions are similar to those based on the baseline two-point distributions, so we report them in EC.4

of the electronic companion.

We follow the literature in setting the number of available vehicles to 25 for all instances and in

considering the number of vehicles actually used as a constraint rather than as part of the objective

(Jepsen et al. 2008, Baldacci et al. 2011, Pecin et al. 2017). To compare the performance of optimal

solutions derived from deterministic models, the distance between two nodes is rounded in the

same way as for the existing exact algorithms—that is, rounded down to the first decimal place

(Jepsen et al. 2008, Baldacci et al. 2011, Pecin et al. 2017, Zhang et al. 2019b).

The simulations allow us to compare seven different methods.

(i) BC: Using the branch-and-cut algorithm proposed in Section 5 to solve the mixed-integer linear

optimization formulation (17). We use BC(AR), BC(WS), and BC(AR+WS) to represent the

BC equipped with (respectively) the arc reduction technique, the warm start technique, and

both.

(ii) MCF: Using the CPLEX solver to solve the multi-commodity flow formulation (EC.23)

inspired by Adulyasak and Jaillet (2015) and Zhang et al. (2019a), as specified in EC.3 of the

electronic companion.

(iii) BD: Using the Benders decomposition algorithm inspired by Zhang et al. (2019a) (and dis-

cussed in EC.3) of the electronic companion to solve (EC.23). We use BD(AR), BD(WS), and

BD(AR+WS) to represent the BD combined with the three acceleration techniques named in

our description of BC.
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(iv) C: Using the exact algorithm presented by Zhang et al. (2019b) to solve the deterministic

vrptw that minimizes the total travel cost.

(v) I: Using the vns meta-heuristic proposed in Section 6 to solve our problem (4).

(vi) E: Using the vns to solve problem (4) with its objective function modified as the sum of

expected lateness durations: ∑
l∈N

∑
ω∈Ω

(ξl(x, ẑω))+

N
.

The studies of Verweij et al. (2003) and Taş et al. (2014a) both adopt this term as a component

of the total cost to be minimized.

(vii) P: Using the vns to solve problem (4) with its objective function modified as the sum of

lateness probabilities: ∑
l∈N

∑
ω∈Ω

1{ξl(s,ẑω)>0}

N
;

here 1 is the indicator function. Adulyasak and Jaillet (2015) adopt the same objective function

to minimize.

After obtaining the vehicle routing solution, we generate another 10,000 travel time samples. We

then use out-of-sample simulations to evaluate the indicators in which decision makers are usually

most interested.

� Cost: The total travel cost, normalized to 1.

� MaxProb: The maximum lateness probability across all nodes.

� SumProb: The sum of lateness probabilities of all nodes.

� MaxExp: The maximum expected lateness duration across all nodes.

� SumExp: The sum of expected lateness durations of all nodes.

� Early: The sum of expected earliness durations of all nodes.

� nLate: The number of nodes with late services in expectation.

� CPU: For exact methods, the CPU time (in seconds) used by the CPLEX; for meta-heuristic

methods, the CPU time that obtains the best solution for the first time.

Computational enhancement

Finding optimal solutions to large-scale instances for vrptw under uncertain travel times is noto-

riously difficult. Although Adulyasak and Jaillet (2015) and Taş et al. (2014a) report some results

for the case of soft time windows, the case of hard time windows—where vehicles must wait when

arriving early —has not received much attention. Zhang et al. (2019a) study the problem and solve

an instance with only 12 nodes. In this section we use the same instance to test the computational

efficiency of the exact branch-and-cut algorithm and our acceleration strategies. See Zhang et al.
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(2019a) for this instance’s details, including the graph, travel times, and time windows. For the

sake of consistency with the set-up of Zhang et al. (2019a), we set θ= 0 and γl = 0, l ∈N . We use

several methods to solve this instance with varying N travel time samples; the results are presented

in Table 2.

Table 2 Comparing exact methods for the instance in Zhang et al. (2019a)

Paper Method
Number of
threads

Number N of travel time samples

20 50 100 200 3000

CPU Speed-up CPU Speed-up CPU Speed-up CPU Speed-up CPU Speed-up

Zhang et al.
(2019a)

MCF 8 60 5.92 460 1.03 1684 0.29 7883 0.06 — —
BD 8 355 1.00 475 1.00 481 1.00 473 1.00 648 1.00

This paper

BD(AR) 8 80 4.44 143 3.32 197 2.44 258 1.83 186 3.48
BD(WS) 8 169 2.10 333 1.43 449 1.07 454 1.04 435 1.49

BD(AR+WS) 8 55 6.45 120 3.96 149 3.23 164 2.88 189 3.43
BC 1 39 9.10 46 10.33 55 8.75 62 7.63 67 9.67

BC(AR) 1 42 8.45 46 10.33 52 9.25 55 8.60 64 10.13
BC(WS) 1 21 16.90 40 11.88 54 8.91 54 8.76 59 10.98

BC(AR+WS) 1 30 11.83 30 15.83 59 8.15 48 9.85 53 12.23

For method MCF, the CPLEX works with eight threads. Leveraging the opportunistic parallelism

provided by the CPLEX, we apply method BD—with Benders cuts added as lazy constraints—

using eight threads. Since method BC adds the RCI as user cuts and since the CPLEX does not

support multi-thread computing in such situations, it follows that BC runs with a single thread

only. Even so, method BC generally outperforms BD in computational time, and the latter generally

outperforms MCF. For method MCF, the CPU time increases super-linearly in the number N of

travel time samples. However, the more sophisticated methods (BD and BC) yield only marginal

improvements. Table 2 also reports the speed-up ratios relative to method BD, showing that our

BC-based methods speed up by as much as an order of magnitude.

We next test the digital tree data structure’s computational efficiency. Although previous tests

of the trie have established its usefulness in solving some other vrp variants (e.g., the vrp with

loading constraints; Zhang et al. 2015), no studies have evaluated its usage and effectiveness in

solving vrptw when travel times are uncertain. To ensure a fair comparison, we fix the number

of iterations by simply improving the constructed initial solution via a local search procedure. We

arbitrarily choose the instance r101 to solve while varying the number N of travel time samples.

The CPU times—with and without the digital tree—are reported in Table 3.

Table 3 Comparing procedures with and without the data structure digital tree (trie)

N 8 40 200 1,000 5,000

CPU
Plain 1.04 3.07 15.37 99.14 813.74
Trie 1.34 2.01 2.98 10.22 52.87

Speed-up 0.77 1.52 5.16 9.71 15.39
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Observe that the speed-up ratio increases to 15.39 with the increment ofN to 5,000, which reflects

the computationally more demanding recalculation of the sri (with complexity O(N logN)). The

digital tree is more effective in later stages of vns because more route information is directly

available, obviating the need to recalculate the sris from scratch. However, the trie may be less

beneficial when N is small—that is, because of the extra time spent in managing the data structure.

Comparison involving small instances

To test the meta-heuristic I’s search ability, we use both exact methods and that meta-heuristic to

solve the aforementioned Solomon’s instances with only the first 25 customers and eight vehicles.

Although the valid inequalities in Proposition 4 are computationally effective for the instance

studied by Zhang et al. (2019a), they are tested ineffective vis-à-vis Solomon’s instances and so we

ignore those inequalities in this section. We set the CPU time limit for the exact methods at 1,800

seconds and the number N of travel time samples at 200. Results are given in Table 4, where Obj

and Gap signify (respectively) the objective value and the optimality gap.

Our intention is to compare the solutions found by the meta-heuristic I with the optimal ones

obtained by the exact method BC(AR). Unfortunately, the latter solves only 14 of the 29 instances

optimally. For all those 14 instances, method I finds the optimal solutions. Among the remaining 15

instances, method BC(AR) obtains feasible solutions (within 1,800 seconds) for 11 instances and

fails to find any solution for the other 4 instances. Among the 11 instances, our meta-heuristic I

finds the same solutions as does method BC(AR) for 7 instances yet finds better solutions for the

other 4 instances. These outcomes highlight the search ability of the I meta-heuristic.

We also test the exact method BC(AR+WS), which injects an initial solution to “warm start”

the method BC(AR). Here we use the solution found by the meta-heuristic I with five seconds as

the initial solution. Notice that method I finds the best solutions within five seconds for all the

instances; the implication is that method BC(AR+WS) is only possible to obtain the same (or

better) solutions than does method I. Table 4 shows that method BC(AR+WS) solves 22 out of

29 instances optimally but that it does not find better solutions (than does method I) for all the

instances. For the remaining 7 instances, it is unclear whether the solutions found—within five

seconds—by method I are optimal.

Comparison with classical decision criteria

Real-world vrptws are usually of a large scale and can seldom be solved optimally within accept-

able computational times. We experiment on Solomon’s instances with the first 50 and 100 cus-

tomers using method BC(AR+WS); only 10 and 3 (respectively) of the 29 instances are solved

optimally within 1,800 seconds. Hence we use meta-heuristics to solve the Solomon’s instances and
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Table 4 Comparison of heuristic versus exact methods for small instances

Instance

Method

I BC(AR) BC(AR+WS)

CPU Obj CPU Obj Gap CPU Obj Gap

r101 0.07 6.38 0.11 6.38 0.00 0.14 6.38 0.00
r102 0.14 2.30 1800.03 2.30 0.02 1800.19 2.30 0.02
r103 0.19 0.00 1800.00 — — 0.00 0.00 0.00
r104 0.07 0.00 1800.75 0.90 1.00 0.02 0.00 0.00
r105 0.09 1.88 5.15 1.88 0.00 2.34 1.88 0.00
r106 0.29 1.23 1800.00 — — 1800.11 1.23 1.00
r107 4.82 0.24 1800.32 1.23 1.00 1800.60 0.24 1.00
r108 1.57 0.00 1800.00 — — 0.02 0.00 0.00
r109 0.73 1.54 149.39 1.54 0.00 126.22 1.54 0.00
r110 0.56 0.00 1800.02 3.56 1.00 0.02 0.00 0.00
r111 3.52 0.07 1800.05 0.07 1.00 1800.13 0.07 1.00
r112 0.31 0.00 1800.00 — — 0.02 0.00 0.00
c101 0.07 0.12 0.06 0.12 0.00 0.08 0.12 0.00
c102 0.25 0.12 3.87 0.12 0.00 1.90 0.12 0.00
c103 0.15 0.00 0.19 0.00 0.00 0.02 0.00 0.00
c104 0.25 0.00 1.58 0.00 0.00 0.02 0.00 0.00
c105 0.05 0.00 0.06 0.00 0.00 0.02 0.00 0.00
c106 0.19 3.23 0.11 3.23 0.00 0.11 3.23 0.00
c107 0.08 0.00 0.05 0.00 0.00 0.02 0.00 0.00
c108 0.07 0.00 0.25 0.00 0.00 0.02 0.00 0.00
c109 0.09 0.00 1.28 0.00 0.00 0.02 0.00 0.00
rc101 2.46 11.33 42.39 11.33 0.00 40.08 11.33 0.00
rc102 3.23 14.66 94.49 14.66 0.00 106.58 14.66 0.00
rc103 0.35 1.27 1801.20 5.38 1.00 1800.83 1.27 1.00
rc104 0.32 1.92 1800.49 1.92 1.00 1800.05 1.92 1.00
rc105 3.52 1.77 1800.57 1.77 0.92 1098.86 1.77 0.00
rc106 0.43 0.29 1800.60 0.29 0.99 1614.22 0.29 0.00
rc107 0.49 0.00 1800.02 0.00 0.99 889.78 0.00 0.00
rc108 0.67 0.00 1800.03 0.00 1.00 1800.11 0.00 1.00

compare results based on the sri criterion with those derived using two canonical decision criteria:

lateness probability and expected lateness duration.

In the experiments, we set the number N of travel time samples at 200, the budget at 1.05 times

the minimum possible cost, and the CPU time limit at 900 seconds. We solve all instances with the

first 25, 50, and 100 customers using methods C, I, E, and P. Table 5 reports the average results

grouped by instance class. In method I we set θ = 0.5 and γl = 0.1 for l ∈N . We use the `1 norm

to define the Wasserstein distance.

Method C minimizes the travel cost while ensuring on-time service in the deterministic world. In

the presence of uncertainty, however, the out-of-sample evaluation reveals its poor on-time service

performance. In particular, the lateness probability for the worst-case customer, MaxProb, can

be greater than 50% in some instances with 100 customers. There are even customers for whom

lateness occurs in expectation, a phenomenon explained by Proposition 2. Such customers might
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Table 5 Comparison of decision criteria

n Instance Method
Performance

Cost nLate MaxProb SumProb MaxExp SumExp Early CPU

25

r1

C 1.000 0.08 0.307 0.847 2.18 4.22 221 —
I 1.043 0.00 0.122 0.263 0.49 0.79 256 2.4
E 1.044 0.00 0.122 0.264 0.49 0.79 261 9.7
P 1.043 0.00 0.121 0.266 0.58 0.91 261 13.0

c1

C 1.000 0.00 0.063 0.112 0.28 0.42 475 —
I 1.015 0.00 0.045 0.095 0.24 0.37 510 0.2
E 1.019 0.00 0.045 0.095 0.24 0.37 508 0.3
P 1.020 0.00 0.045 0.095 0.24 0.37 491 0.4

rc1

C 1.000 0.38 0.348 1.407 3.13 10.47 91 —
I 1.052 0.00 0.177 0.473 1.02 2.48 102 3.2
E 1.037 0.25 0.272 0.486 1.26 2.07 90 1.1
P 1.039 0.25 0.250 0.410 4.15 4.76 87 0.9

50

r1

C 1.000 1.67 0.491 3.821 5.52 27.43 247 —
I 1.049 0.00 0.194 0.972 1.49 4.43 312 135.1
E 1.048 0.58 0.405 1.529 3.09 7.75 322 526.3
P 1.047 1.00 0.697 1.423 36.02 43.53 346 161.4

c1

C 1.000 0.00 0.078 0.224 0.38 0.82 156 —
I 1.016 0.00 0.054 0.161 0.26 0.58 243 2.2
E 1.023 0.00 0.054 0.161 0.26 0.58 225 9.9
P 1.023 0.00 0.054 0.161 0.26 0.58 216 6.6

rc1

C 1.000 1.38 0.465 3.954 5.48 32.37 142 —
I 1.052 0.00 0.266 1.469 2.44 8.90 182 153.4
E 1.048 0.38 0.449 1.457 3.92 9.70 176 120.4
P 1.048 0.88 0.510 1.185 25.70 29.66 174 151.8

100

r1

C 1.000 5.25 0.582 9.119 6.05 64.05 442 —
I 1.050 0.00 0.296 2.558 2.41 12.64 540 522.0
E 1.049 2.83 0.843 4.900 5.82 25.89 492 378.2
P 1.049 3.25 0.981 4.816 60.99 151.30 550 305.4

c1

C 1.000 1.56 0.494 1.351 4.26 9.38 60 —
I 1.047 0.00 0.092 0.310 0.42 0.95 238 21.1
E 1.041 0.00 0.092 0.310 0.42 0.95 174 48.7
P 1.045 0.00 0.088 0.306 0.42 1.02 327 73.8

rc1

C 1.000 4.88 0.515 9.619 7.14 87.86 311 —
I 1.050 0.00 0.337 3.217 4.02 20.92 452 374.4
E 1.049 2.88 0.757 4.847 8.19 32.42 383 529.0
P 1.049 2.63 0.920 4.029 71.93 132.76 454 399.7

complain about the poor service and switch to another company. Similar results have been reported

also by Russell and Urban (2008), Taş et al. (2013), and Ehmke et al. (2015), among others.

Under the service-oriented management philosophy, methods I, E, and P aim to improve the

on-time service performance—in terms of their respective objectives—by spending 5% more and

arriving earlier. Note that method I cannot obtain budget-feasible solutions for a few rc1 instances,

for which greater costs are needed. It seems that c1 instances are the easiest to optimize because
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their required CPU times are shorter and the on-time service performance under these methods is

similar across these instances.

We next focus on r1 and rc1 instances. Table 5 documents that method I has a better overall

on-time service performance than methods E and P, especially in instances with 100 customers.

Since methods E and P optimize over SumExp and SumProb, respectively, we expect them to

perform best in terms of their respective indicators. However, this phenomenon is observed only in

the rc1 case with 25 customers. In many instances (especially those with 100 customers), method I

outperforms method E with regard to SumExp and also outperforms method P with regard to

SumProb. Method P achieves a lower SumProb than do methods C and E in most instances, but

its performance is clearly suboptimal in terms of MaxProb, MaxExp, and SumExp. Method E is

able to mitigate the lateness duration. Yet the service is biased—as shown by method E’s values

for MaxProb and MaxExp, which are sometimes even worse than those obtain using method C.

We believe that the favorable performance of method I benefits from the sri properties specified

in Proposition 3. In particular, the property of infeasible fulfillment greatly reduces the solution

space in which customers receive poor service. So when it comes to finding a near-optimal solution,

method I can be faster than methods P and E, which incorporate penalties but still allow poor

services to survive in the search process. Furthermore, method I cannot sacrifice some customers

to compensate for others, thus rendering robust and fair service to all customers. Hence method I’s

values for MaxProb and MaxExp are usually better than those derived under other methods, and

nLate is always equal to zero in the instances tested. Owing to the convexity property of sri,

method I can be easier to search along a descent direction in local search, facilitating optimiza-

tion. This advantage also explains method E performing better than method P in cases with 100

customers—that is, since the former method has a convex objective function and the latter does

not. According to Proposition 3’s property of violation bounds, method I accounts for both the

lateness probability and its magnitude; that ability explains its balanced performance on all the

on-time service indicators.

Calibrating the Wasserstein distance

The “optimizer’s curse” in stochastic programming—also known, in machine learning, as

overfitting—reflects that solutions based on the empirical distribution might underestimate the ser-

vice fulfillment risk (Mohajerin Esfahani and Kuhn 2018). We attempt to verify this phenomenon

and study the effect of incorporating distributional ambiguity to mitigate overfitting to the empir-

ical distribution. We set the budget ratio to 1.1 instead of 1.05 in order to enlarge the feasible

space, which helps elucidate the benefits of our robust data-driven optimization model.
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For each θ, we solve all the r1 and rc1 instances with N = 200 training samples and then evaluate

out-of-sample performance with another 10,000 testing samples. We fix γl = 0.1 (l ∈ N ) and test

over various Wasserstein distances θ in the discrete set Θ = {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.

In comparison with the set used in Mohajerin Esfahani and Kuhn’s (Mohajerin Esfahani and

Kuhn (2018)) computational study, our set Θ has the same range (from 0 to 1) but is sparser

so as to alleviate the computational burden. We also test several θ > 1; because they do not

yield any additional improvements in performance, the results are not reported here. Note that

the case of θ = 0 ignores distributional ambiguity and corresponds to the commonly used sample

average approximation. In addition, we test over a calibrated distance obtained via the k-fold

cross-validation technique (for a detailed description, see Mohajerin Esfahani and Kuhn). To ease

the computational burden, we apply a 4-fold cross-validation based on the average performance on

instances r101, r105, r109, rc101, and rc105. In each of the four runs, we choose the best Wasserstein

distance from set Θ; our calibration then amounts to averaging the four best distances. The results

are presented in Table 6.

The out-of-sample sri represents the sum of sris for all nodes in N evaluated with the testing

samples, and the in-sample counterpart is evaluated by way of our training samples. Note that

the in-sample sri coincides with the objective value of problem (4) when θ = 0. We observe that,

in general, the in-sample sri optimistically underestimates the out-of-sample sri; this is the over-

fitting phenomenon. We also observe that the out-of-sample sri tends first to decrease and then

to increase—although the inherent randomness of simulation renders this tendency inconsistent.

Using cross-validation as a heuristic to determine θ allows us to obtain better out-of-sample sri

than does using the empirical distribution alone. This outcome demonstrates that incorporating

distributional ambiguity over empirical distributions helps improve the out-of-sample performance

of predictive indicators.

8. Conclusion and Future Research

This paper details how to mitigate late service risk in Vehicle Routing Problems with Time Win-

dows under empirical travel times. In particular, we propose a new decision criterion—the Service

Fulfillment Risk Index—to measure the lateness risk. This criterion accounts for both the prob-

ability and magnitude of lateness, and its convexity makes the sri computationally tractable.

Our main theoretical result is a closed-form solution to evaluate the criterion under Wasserstein

distance–based ambiguity about the empirical travel times. We also develop an exact branch-and-

cut algorithm and a variable neighborhood search meta-heuristic, as well as techniques to speed

them up, for solving the resultant problem. Extensive computational studies demonstrate favor-

able performances of our decision criterion in comparison with several existing criteria. In terms of
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Table 6 Effect of the Wasserstein distance

θ Instance
Performance

sri
(in-sample)

sri
(out-of-sample)

MaxProb SumProb MaxExp SumExp CPU

0

r1 6.22 6.28 0.161 1.042 1.23 4.24 591
rc1 6.80 8.08 0.214 1.206 2.00 5.58 656

Average 6.45 7.00 0.182 1.108 1.54 4.78 617

0.001

r1 6.13 6.21 0.148 0.992 1.21 4.18 652
rc1 5.38 5.85 0.224 1.082 1.54 4.01 539

Average 5.83 6.07 0.178 1.028 1.34 4.11 607

0.005

r1 6.08 6.03 0.148 0.963 1.18 4.04 612
rc1 5.02 5.94 0.246 1.047 1.61 4.12 618

Average 5.65 5.99 0.187 0.996 1.35 4.07 615

0.01

r1 6.25 6.33 0.164 1.091 1.20 4.26 524
rc1 5.40 6.11 0.236 1.099 1.52 4.22 418

Average 5.91 6.24 0.193 1.094 1.33 4.25 482

0.05

r1 6.45 6.57 0.133 1.016 1.23 4.41 600
rc1 4.78 5.60 0.208 1.011 1.26 3.90 487

Average 5.78 6.18 0.163 1.014 1.24 4.20 555

0.1

r1 6.12 6.19 0.172 1.063 1.22 4.16 413
rc1 4.82 5.79 0.228 1.084 1.56 4.12 591

Average 5.60 6.03 0.195 1.071 1.36 4.15 484

0.5

r1 6.47 6.65 0.166 1.087 1.24 4.48 494
rc1 6.64 8.04 0.243 1.323 1.76 5.67 569

Average 6.54 7.21 0.197 1.181 1.45 4.96 524

1

r1 6.62 6.83 0.160 1.006 1.26 4.58 451
rc1 6.71 8.04 0.227 1.105 2.30 5.55 506

Average 6.66 7.32 0.187 1.046 1.68 4.97 473

0.05025
(calibrated)

r1 6.07 6.14 0.147 1.024 1.20 4.15 597
rc1 5.05 5.53 0.242 1.111 1.25 3.95 520

Average 5.66 5.90 0.185 1.059 1.22 4.07 566

mitigating service violations, the deterministic model’s would-be optimal solution is actually much

worse than is the “suboptimal” solution obtained via our meta-heuristic with sri. This finding

points to the importance of the choice of decision criterion over optimality.

We stress that, beyond vrptw, the set of applications in which sri can be used to evaluate target

fulfillment risk is quite broad and includes, inter alia, portfolio optimization (Natarajan et al. 2010,

Li 2018), inventory control (Bertsimas and Thiele 2006, See and Sim 2010, Bandi et al. 2019),

and appointment scheduling (Mak et al. 2014, Qi 2016, Jiang et al. 2017). In those problems, the

uncertain attributes (financial gain, unsold inventory, patients’ waiting time) can be expressed as

piecewise affine functions in the uncertain parameters—respectively, the investments’ returns, the

demand, and service times—and so, by analogy, the closed-form result in Section 4 is applicable.

It would be instructive to investigate these applications.



Zhang, Zhang, Lim, & Sim: Robust Data-Driven Vehicle Routing
Article Accepted by Operations Research; manuscript no. OPRE-2018-11-676 29

In urban areas, travel times are highly time-dependent. We do not examine this factor here but

will consider it in future work.
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Bräysy, O. 2003. A reactive variable neighborhood search for the vehicle-routing problem with time windows.

INFORMS Journal on Computing 15(4) 347–368.

Chen, Z., D. Kuhn, W. Wiesemann. 2018. Data-driven chance constrained programs over Wasserstein balls.

Available at Optimization Online.

Claus, A. 1984. A new formulation for the travelling salesman problem. SIAM Journal on Algebraic Discrete

Methods 5(1) 21–25.

Cordeau, J.-F. 2006. A branch-and-cut algorithm for the dial-a-ride problem. Operations Research 54(3)

573–586.

Cordeau, J.-F., G. Desaulniers, J. Desrosiers, M. M. Solomon, F. Soumis. 2002. VRP with time windows.

The Vehicle Routing Problem. Society for Industrial & Applied Mathematics (SIAM), 157–193.

Dantzig, G. B., J. H. Ramser. 1959. The truck dispatching problem. Management Science 6(1) 80–91.

De La Briandais, R. 1959. File searching using variable length keys. Papers presented at the the March 3-5,

1959, Western Joint Computer Conference. ACM, 295–298.

Ehmke, J. F., A. M. Campbell, T. L. Urban. 2015. Ensuring service levels in routing problems with time

windows and stochastic travel times. European Journal of Operational Research 240(2) 539–550.

Errico, F., G. Desaulniers, M. Gendreau, W. Rei, L.-M. Rousseau. 2016. A priori optimization with recourse

for the vehicle routing problem with hard time windows and stochastic service times. European Journal

of Operational Research 249(1) 55–66.

Errico, F., G. Desaulniers, M. Gendreau, W. Rei, L.-M. Rousseau. 2018. The vehicle routing problem with

hard time windows and stochastic service times. EURO Journal on Transportation and Logistics 7(3)

223–251.

Gao, R., X. Chen, A. J. Kleywegt. 2017. Wasserstein distributional robustness and regularization in statistical

learning. arXiv preprint arXiv:1701.04200.

Gao, R., A. J. Kleywegt. 2016. Distributionally robust stochastic optimization with Wasserstein distance

arXiv preprint arXiv:1701.04200.

Gendreau, M., O. Jabali, W. Rei. 2016. 50th anniversary invited article–future research directions in stochas-

tic vehicle routing. Transportation Science 50(4) 1163–1173.

Golden, B., S. Raghavan, E. Wasil, eds. 2008. The Vehicle Routing Problem: Latest Advances and New

Challenges. Springer US.

Jaillet, P., J. Qi, M. Sim. 2016. Routing optimization under uncertainty. Operations Research 64(1) 186–200.

Jepsen, M., B. Petersen, S. Spoorendonk, D. Pisinger. 2008. Subset-row inequalities applied to the vehicle-

routing problem with time windows. Operations Research 56(2) 497–511.



Zhang, Zhang, Lim, & Sim: Robust Data-Driven Vehicle Routing
Article Accepted by Operations Research; manuscript no. OPRE-2018-11-676 31

Jiang, R., S. Shen, Y. Zhang. 2017. Integer programming approaches for appointment scheduling with

random no-shows and service durations. Operations Research 65(6) 1638–1656.

Kao, E. P. C. 1978. A preference order dynamic program for a stochastic traveling salesman problem.

Operations Research 26(6) 1033–1045.

Kenyon, A. S., D. P. Morton. 2003. Stochastic vehicle routing with random travel times. Transportation

Science 37(1) 69–82.
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Electronic Companion

EC.1. Proofs of Analytical Results

EC.1.1. Proof of Proposition 1

We can recursively calculate the service start time at node iκ along a route (1, i2, i3, . . . , iκ−1, iκ, . . .)

as follows:
t1 = τ 1 = 0,
ti2 = max{t1 + z1i2 , τ i2},
ti3 = max{ti2 + zi2i3 , τ i3},

...
tiκ = max{tiκ−1

+ ziκ−1iκ , τ iκ}.
Accordingly, we obtain

tiκ = max
iυ∈{1,i2,i3,...,iκ−1,iκ}

{
τ iυ +

∑
a∈{(iυ ,iυ+1),(iυ+1,iυ+2),...,(iκ−1,iκ)}

za

}
. (EC.1)

Observe that (2) is indeed equivalent to (EC.1), in which k and l in (2) correspond to (respectively)

iυ and iκ in (EC.1).

EC.1.2. Proof of Theorem 1

When γ = 1, it is known that F-cvarγ(max{ξ̃,−α}) = max{esssup (ξ̃),−α}. Hence, both (5) and

(7) have the same solution: ργ(ξ̃) is equal to zero if esssup (ξ̃)≤ 0 or is equal to +∞ otherwise.

For the other case, γ ∈ [0,1), we write sri as an optimization problem:

min α

s.t. β+
1

1− γ
sup
P∈F

EP[max{ξ̃−β,−α−β,0}]≤ 0,

α≥ 0.

(EC.2)

Denote the optimal solution by (α∗, β∗), and observe that β∗ ≤ 0 (because otherwise the first

constraint would be violated). We now discuss two cases in greater detail.

Case 1: γ = 0. In this case, the first constraint becomes

sup
P∈F

EP[max{ξ̃,−α,β}]≤ 0.

To minimize the objective α, observe that we can impose β ≤−α without changing the optimal

objective value. Hence, we obtain the following equivalent form of the constraint:

sup
P∈F

EP[max{ξ̃+α,0}]≤ (1− 0)α.

This inequality gives the result.
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Case 2: γ ∈ (0,1). Here we prove by contradiction that α∗ =−β∗. Suppose first that α∗ >−β∗.
Then, by definition, β∗ + 1

1−γ supP∈F EP[max{ξ̃ − β∗,−α∗ − β∗,0}] ≤ 0. Now, for another solution

α̂ :=−β∗ we have α̂≥ 0 because β∗ ≤ 0. Moreover,

β∗+
1

1− γ
sup
P∈F

EP[max{ξ̃−β∗,−α̂−β∗,0}]

= β∗+
1

1− γ
sup
P∈F

EP[max{ξ̃−β∗,0}] (because − α̂−β∗ = 0)

= β∗+
1

1− γ
sup
P∈F

EP[max{ξ̃−β∗,−α∗−β∗,0}] (because α∗ >−β∗)

≤ 0.

Hence α̂ is feasible and achieves a lower objective value, which contradicts the statement that α∗

is optimal.

Suppose instead that α∗ <−β∗. We claim that β̂ :=−α∗ is a feasible solution because

β̂+
1

1− γ
sup
P∈F

EP[max{ξ̃− β̂,−α∗− β̂,0}]

= β̂+
1

1− γ
sup
P∈F

EP[max{ξ̃− β̂,−α∗− β̂}]

= β∗+ (β̂−β∗) +
1

1− γ
sup
P∈F

EP[max{ξ̃−β∗− (β̂−β∗),−α∗−β∗− (β̂−β∗)}]

= β∗+
1

1− γ
sup
P∈F

EP[max{ξ̃−β∗,−α∗−β∗}] +

(
1− 1

1− γ

)
(β̂−β∗)

= β∗+
1

1− γ
sup
P∈F

EP[max{ξ̃−β∗,−α∗−β∗,0}] +

(
1− 1

1− γ

)
(β̂−β∗)

≤
(

1− 1

1− γ

)
(β̂−β∗)

< 0.

Since the constraint is not tight when β := β̂, there must exist some α̂ < α∗ that will make the con-

straint tight; hence α̂ attains a lower objective value than does α∗, which contradicts the statement

that α∗ is optimal. To conclude: β∗ =−α∗, and the first constraint of (EC.2) is equivalent to

−α+
1

1− γ
sup
P∈F

EP[max{ξ̃+α,0}]≤ 0,

which is exactly the constraint in (7). The result now follows.

EC.1.3. Proof of Proposition 3

We seek to establish the following properties for all ξ̃, ξ̃1, ξ̃2 ∈ V.

(i) Risk-free fulfillment. If P[ξ̃ ≤ 0] = 1 for all P ∈ F , then the constraint supP∈F EP[(ξ̃ + α)+] ≤
(1−γ)α applies for α= 0. Therefore, ργ(ξ̃) = 0. If, conversely, ργ(ξ̃) = 0 then supP∈F EP[(ξ̃)+]≤
0 and so P[ξ̃ ≤ 0] = 1 for all P∈F .

(ii) Infeasible fulfillment. For any α∈ [0,+∞), if F-cvarγ(ξ̃)> 0 then F-cvarγ(max{ξ̃,−α})> 0.

However, the definition of sri requires that F-cvarγ(max{ξ̃,−α}) ≤ 0; therefore, ργ(ξ̃) =

min∅= +∞.
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(iii) Convexity. Put α∗1 = ργ(ξ̃1) and α∗2 = ργ(ξ̃2). By definition, we have supP∈F EP[(ξ̃1 +α∗1)+]−(1−

γ)α∗1 ≤ 0 and supP∈F EP[(ξ̃2 +α∗2)+]− (1− γ)α∗2 ≤ 0. Observe that the function supP∈F EP[(ξ̃+

α)+]− (1− γ)α is jointly convex in ξ̃ and α—from which it follows that, for λ∈ [0,1],

sup
P∈F

EP
[(

(λξ̃1 + (1−λ)ξ̃2) + (λα∗1 + (1−λ)α∗2)
)+]− (1− γ) (λα∗1 + (1−λ)α∗2)

≤ λ
(

sup
P∈F

EP[(ξ̃1 +α∗1)+]− (1− γ)α∗1

)
+ (1−λ)

(
sup
P∈F

EP[(ξ̃2 +α∗2)+]− (1− γ)α∗2

)
≤ 0.

As a result, αλ = λα∗1 + (1−λ)α∗2 satisfies the constraint supP∈F EP[(λξ̃1 + (1−λ)ξ̃2 +αλ)+]≤

(1− γ)αλ and so ργ(λξ̃1 + (1−λ)ξ̃2)≤ αλ = λργ(ξ̃1) + (1−λ)ργ(ξ̃2).

(iv) Violation bounds. The bound applies for ργ(ξ̃) =∞ and ργ(ξ̃) = 0 because the latter would

indicate that P[ξ̃ > 0] = 0 for all P∈F . For the case ργ(ξ̃)∈ (0,+∞), let α∗ = ργ(ξ̃); then, for

P∈F , we have

P[ξ̃ > α∗φ] = P[ξ̃+α∗ >α∗φ+α∗]

≤ P[(ξ̃+α∗)+ >α∗(1 +φ)]

≤ E[(ξ̃+α∗)+]

α∗(1 +φ)

≤ (1− γ)α∗

α∗(1 +φ)

=
1− γ
1 +φ

.

The second and third inequalities hold by Markov’s inequality and the representation (7),

respectively.

EC.1.4. Proof of Theorem 2

To streamline the notation, in this proof we omit the l subscript provided no confusion could arise.

The proof proceeds in three steps. The first step follows standard arguments from the literature;

the second and third steps rely on our observations of the special model structure.

Step 1: Derive a tractable reformulation of the term supP∈F(θ) EP[(ξ(x, z̃) +α)+]. This term can

be written more explicitly as

Z1 = sup EP[(ξ(x, z̃) +α)+]

s.t. EP̄[‖z̃− z̃†‖p]≤ θ,
(z̃, z̃†)∼ P̄,
z̃ ∼ P,
z̃† ∼ P†,
P̄[(z̃, z̃†)∈W ×W] = 1.

(EC.3)
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In light of the law of total probability, we can construct the joint distribution P̄ of z̃† and z̃

using the marginal distribution P† of z̃† and the conditional distribution Pω of z̃ when z̃† = ẑω for

all ω ∈Ω. Therefore, problem (EC.3) can be equivalently expressed as

Z1 = sup
1

N

∑
ω∈Ω

EPω [(ξ(x, z̃) +α)+]

s.t.
1

N

∑
ω∈Ω

EPω [‖z̃− ẑω‖p]≤ θ,

Pω[z̃ ∈W] = 1 ∀ω ∈Ω

or, more explicitly, as

Z1 = sup
1

N

∑
ω∈Ω

∫
W

(
(ξ(x,z) +α)+

)
dFω(z)

s.t.
1

N

∑
ω∈Ω

∫
W

(‖z− ẑω‖p)dFω(z)≤ θ,

1

N

∫
W

dFω(z) =
1

N
∀ω ∈Ω,

dFω(z)≥ 0 ∀ω ∈Ω, z ∈W;

(EC.4)

here Fω(z) denotes the cumulative distribution function of the travel times. This problem has

infinitely many decision variables dFω(z), so we address (EC.4) by investigating its dual problem as

D1 = inf θr+
1

N

∑
ω∈Ω

vω

s.t. vω + r‖z− ẑω‖p ≥ (ξ(x,z) +α)+ ∀ω ∈Ω, z ∈W,
r ∈R+,
vω ∈R ∀ω ∈Ω.

(EC.5)

Since the support set W is a polyhedron and since the “loss function” (ξ(x,z) + α)+ is convex

piecewise affine in z, it follows from Mohajerin Esfahani and Kuhn (2018, Cor. 5.1) that strong

duality holds for (EC.4). Therefore, Z1 =D1.

The technical difficulty in solving problem (EC.5) lies in addressing the first constraint. Given

any vehicle routing solution x ∈ X , let νkla(x) = 1 if a ∈ Akl(x) and νkla(x) = 0 otherwise; then∑
a∈Akl(x) za = νkl(x)>z. Hence the first constraint is equivalent to{

vω + r‖z− ẑω‖p ≥ τk +νkl(x)>z− τ l +α ∀ω ∈Ω, k ∈Nl(x), z ∈W,
vω + r‖z− ẑω‖p ≥ 0 ∀ω ∈Ω, z ∈W

⇐⇒


vω + max

‖yωk‖ p
p−1
≤r
y>ωk(z− ẑω)≥ τk +νkl(x)>z− τ l +α ∀ω ∈Ω, k ∈Nl(x), z ∈W,

vω + max
‖yω0‖ p

p−1
≤r
y>ω0(z− ẑω)≥ 0 ∀ω ∈Ω,z ∈W

⇐⇒


(yωk−νkl(x))>z ≥ y>ωkẑω + τk− τ l +α− vω ∀ω ∈Ω, k ∈Nl(x), z ∈W,
y>ω0z ≥ y>ω0ẑω − vω ∀ω ∈Ω, z ∈W,
‖yωk‖ p

p−1
≤ r ∀ω ∈Ω, k ∈Nl(x)∪{0}
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⇐⇒


min
z≥z

(yωk−νkl(x))>z ≥ y>ωkẑω + τk− τ l +α− vω ∀ω ∈Ω, k ∈Nl(x),

min
z≥z

y>ω0z ≥ y>ω0ẑω − vω ∀ω ∈Ω,

‖yωk‖ p
p−1
≤ r ∀ω ∈Ω, k ∈Nl(x)∪{0}

⇐⇒


max

qωk=yωk−νkl(x)
qωk≥0

z>qωk ≥ y>ωkẑω + τk− τ l +α− vω ∀ω ∈Ω, k ∈Nl(x),

max
qω0=yω0
qω0≥0

z>qω0 ≥ y>ω0ẑω − vω ∀ω ∈Ω,

‖yωk‖ p
p−1
≤ r ∀ω ∈Ω, k ∈Nl(x)∪{0}

⇐⇒



z>qωk ≥ y>ωkẑω + τk− τ l +α− vω ∀ω ∈Ω, k ∈Nl(x),
z>qω0 ≥ y>ω0ẑω − vω ∀ω ∈Ω,
qωk = yωk−νkl(x) ∀ω ∈Ω, k ∈Nl(x),
qω0 = yω0 ∀ω ∈Ω,
qωk ≥ 0 ∀ω ∈Ω, k ∈Nl(x)∪{0},
‖yωk‖ p

p−1
≤ r ∀ω ∈Ω, k ∈Nl(x)∪{0}

⇐⇒


vω ≥ (ẑω −z)>qωk + τk +νkl(x)>ẑω − τ l +α ∀ω ∈Ω, k ∈Nl(x),
vω ≥ (ẑω −z)>qω0 ∀ω ∈Ω,
r≥ ‖qωk +νkl(x)‖ p

p−1
∀ω ∈Ω, k ∈Nl(x),

r≥ ‖qω0‖ p
p−1

∀ω ∈Ω,

qωk ≥ 0 ∀ω ∈Ω, k ∈Nl(x)∪{0}.

(EC.6)

The first equivalence holds by the definition of dual norm and because ‖·‖ p
p−1

is the dual norm of

‖·‖p (Boyd and Vandenberghe 2004); the fourth equivalence follows from linear duality.

Hence problem (EC.5) becomes

D1 = inf θr+
1

N

∑
ω∈Ω

vω

s.t. (EC.6), r ∈R+, v ∈R|Ω|,
(EC.7)

a problem with only a finite number of decision variables and constraints.

Step 2: Find the closed-form solution for the term supP∈F(θ) EP[(ξ(x, z̃) + α)+]. We proceed

by making this key observation: the right-hand sides of the first four constraints in (EC.6) are

increasing in qωk ≥ 0 for ω ∈Ω and k ∈Nl(x)∪ {0}. So as to minimize the objective function—in

problem (EC.7), a weighted sum of r and v—we set qωk = 0 for all ω ∈Ω and all k ∈Nl(x)∪ {0}

but without changing the optimal objective value. Thus constraint (EC.6) is reduced to
vω ≥ τk +νkl(x)>ẑω − τ l +α ∀ω ∈Ω, k ∈Nl(x),
vω ≥ 0 ∀ω ∈Ω,
r≥ ‖νkl(x)‖ p

p−1
∀ω ∈Ω, k ∈Nl(x),

r≥ 0 ∀ω ∈Ω.

(EC.8)
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By definition of polynomial norm, we have ‖νkl(x)‖ p
p−1

= |Akl(x)|
p−1
p . We subsequently observe

that the third constraint in (EC.8) is tightest when k = 1; hence this constraint is reduced to

r ≥ |A1l(x)|
p−1
p (or, equivalently, to r ≥ |Al(x)|

p−1
p ) for all ω ∈ Ω. Note also that ξl(x, ẑω) =

maxk∈Nl(x){τk+νkl(x)′ẑω−τ l} for ω ∈Ω. It follows that problem (EC.7) has the optimal objective

value

D1 = θ|Al(x)|
p−1
p +

1

N

∑
ω∈Ω

(ξ(x, ẑω) +α)+. (EC.9)

Step 3: Substitute the closed-form result into problem (10). Recall that D1 = Z1 =

supP∈F(θ) EP[(ξl(x, z̃) + αl)
+]. We substitute (EC.9) into the first constraint of problem (10) and

obtain
ργ(ξ(x, z̃)) = min α

s.t. θ|Al(x)|
p−1
p +

1

N

∑
ω∈Ω

(ξ(x, ẑω) +α)+ ≤ (1− γ)α,

α≥ 0.

Re-defining π := α− θ
1−γ |Al(x)|

p−1
p now yields

ργ(ξ(x, z̃)) =
θ

1− γ
|Al(x)|

p−1
p + min π

s.t.
1

N

∑
ω∈Ω

(
ξ(x, ẑω) +

θ

1− γ
|Al(x)|

p−1
p +π

)+

≤ (1− γ)π,

π≥− θ

1− γ
|Al(x)|

p−1
p .

We remark that any π < 0 would violate the first constraint and so would be infeasible. Hence we

can replace the last constraint with π≥ 0 without changing the solution space. This completes the

proof.

EC.1.5. Proof of Theorem 3

Theorem 2 suggests that we should focus on solving problem (11). Observe that ρ̄γl(ξl(x, z̃)) is

exactly equal to the sri for the uncertain delay plus a term θ
1−γl
|Al(x)|(p−1)/p under the empirical

distribution P†—that is, ργl
(
ξl(x, z̃

†)+ θ
1−γl
|Al(x)|(p−1)/p

)
. Using Proposition 3’s property of infea-

sible fulfillment, we conclude that ρ̄γl(ξl(x, z̃)) = +∞ if cvarγl
(
ξl(x, z̃

†) + θ
1−γl
|Al(x)|(p−1)/p

)
> 0;

therefore, also ργl(ξl(x, z̃)) = +∞.

Otherwise, we explore the closed-form solution for problem (11). Suppressing the subscript l and

putting ξ̂ω = ξ(x, ẑω) + θ
1−γ |Al(x)|(p−1)/p, we can rewrite the problem as

ρ̄γ(ξ(x, z̃)) = min α

s.t.
1

N

∑
ω∈Ω

νω ≤ (1− γ)α,

νω ≥ ξ̂ω +α ∀ω ∈Ω,
νω ≥ 0 ∀ω ∈Ω,
α≥ 0.

(EC.10)
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Its dual problem is given by

D2 = max
∑
ω∈Ω

ξ̂ωpω

s.t. q−
∑
ω∈Ω

pω ≤ 1,

− 1

(1− γ)N
q+ pω ≤ 0 ∀ω ∈Ω,

q≥ 0,
pω ≥ 0 ∀ω ∈Ω;

(EC.11)

here q and (pω)ω∈Ω are dual variables corresponding (respectively) to the first two constraints

of problem (EC.10). Because strong duality holds for linear optimization problems, we have

ρ̄γ(ξ(x, z̃)) =D2.

Next we prove that if cvarγ(ξ
†)≤ 0, where ξ† is shorthand for ξ(x, z̃†) + θ

1−γ |Al(x)|(p−1)/p, then

the optimal value of problem (EC.11) is

D2 = max

{
max

i∈{1,2,...,b(1−γ)Nc}

{ ∑i

ω=1 ξ̂(ω)

(1− γ)N − i

}
,0

}
, (EC.12)

in which we follow the convention that 1/0 = +∞.

When ξ̂(1) ≤ 0, we have ξ̂ω ≤ 0 for all ω ∈ Ω and so (EC.12) becomes D2 = 0. Observe that the

optimal solution to problem (EC.11) is q = 0 and pω = 0 for ω ∈Ω and that the objective value is

D2 = 0. Otherwise—that is, if ξ̂(1) > 0—we examine the optimal value based on different values of

(1− γ)N as follows.

1. If (1− γ)N ≤ 1, it already falls in the above case of ξ̂(1) ≤ 0; the reason is that, if ξ̂(1) > 0,

then an application of formula (12) yields cvarγ(ξ
†)> 0—which contradicts our premise that

cvarγ(ξ
†)≤ 0.

2. If 1 < (1− γ)N < N and (1− γ)N is not an integer, then we obtain the optimal value by

(a) constructing the primal and dual feasible solutions and (b) showing that their objective

values coincide.

Without loss of generality, we can rewrite the objective function of problem (EC.11) as∑
ω∈Ω ξ̂(ω)p(ω). For any i= 1,2, . . . , b(1− γ)Nc, we construct a solution as follows. Let p(ω) :=

1
(1−γ)N−i for ω = 1,2, . . . , i (and p(ω) := 0 otherwise), and let q := 1 + i

(1−γ)N−i . We can verify

the feasibility of the solution to problem (EC.11). The corresponding objective value is

ψ(i) =

∑i

ω=1 ξ̂(ω)

(1− γ)N − i
.

Denoting i∗ := argmaxi∈{1,2,...,b(1−γ)Nc}ψ(i), we have D2 ≥ψ(i∗)≥ψ(1)> 0.

Before proceeding to construct a primal feasible solution, we first prove that ψ(i∗) + ξ̂(i) ≥ 0

for i= 1,2, . . . , i∗ and that ψ(i∗) + ξ̂(i) ≤ 0 for i= i∗+ 1, i∗+ 2, . . . ,N .
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(i) If i∗ = 1, then obviously ψ(1) + ξ̂(1) > 0. For i∗ = 2,3, . . . , b(1− γ)Nc, we have

ψ(i∗)≥ψ(i∗− 1)

=⇒
∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗
≥
∑i∗

ω=1 ξ̂(ω)− ξ̂(i∗)

(1− γ)N − i∗+ 1
,

=⇒
∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗
≥−ξ̂(i∗),

=⇒ ψ(i∗) + ξ̂(i∗) ≥ 0,

=⇒ ψ(i∗) + ξ̂(i) ≥ 0 ∀i= 1,2, . . . , i∗.

(EC.13)

The last implication follows from the monotonicity of ξ̂(i).

(ii) For i∗ = 1,2, . . . , b(1− γ)Nc− 1, we similarly obtain

ψ(i∗)≥ψ(i∗+ 1)

=⇒
∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗
≥
∑i∗

ω=1 ξ̂(ω) + ξ̂(i∗+1)

(1− γ)N − i∗− 1
,

=⇒ −
∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗
≥ ξ̂(i∗+1),

=⇒ ψ(i∗) + ξ̂(i∗+1) ≤ 0,

=⇒ ψ(i∗) + ξ̂(i) ≤ 0 ∀i= i∗+ 1, i∗+ 2, . . . ,N.

(EC.14)

If i∗ = b(1− γ)Nc, then

cvarγ(ξ
†)≤ 0

=⇒
i∗∑
ω=1

ξ̂(ω) + ((1− γ)N − i∗)ξ̂(i∗+1) ≤ 0,

=⇒ ψ(i∗) + ξ̂(i∗+1) ≤ 0,

=⇒ ψ(i∗) + ξ̂(i) ≤ 0 ∀i= i∗+ 1, i∗+ 2, . . . ,N.

(EC.15)

We now argue that α :=ψ(i∗) is a feasible solution to problem (EC.10). We have∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗
≤

∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗

=⇒ 1

(1− γ)N

(
((1− γ)N − i∗)

∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗
+

i∗
∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗

)
≤

∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗

=⇒ 1

(1− γ)N

( i∗∑
ω=1

ξ̂(ω) + i∗ψ(i∗)

)
≤ψ(i∗)

=⇒ 1

N

∑
ω∈Ω

(ξ̂(ω) +ψ(i∗))+ ≤ (1− γ)ψ(i∗)

=⇒ 1

N

∑
ω∈Ω

(ξ̂(ω) +α)+ ≤ (1− γ)α.
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The third implication holds owing to (EC.13)–(EC.15). It follows that such an α is a

feasible solution to problem (EC.10) and that ρ̄γ(ξ(x, z̃))≤ψ(i∗).

In summary, we have ψ(i∗)≤D2 ≤ ρ̄γ(ξ(x, z̃))≤ψ(i∗). Therefore, the feasible solutions

to the primal and dual problems are indeed optimal and have the same objective value,

D2 =ψ(i∗) = max
i∈{1,2,...,b(1−γ)Nc}

{ ∑i

ω=1 ξ̂(ω)

(1− γ)N − i

}
.

(iii) Suppose that (1−γ)N = 2,3, . . . ,N . Then, since (1−γ)N −b(1−γ)Nc= 0 cannot be the

denominator, we must tailor the proof as follows to obtain the desired result.

For any i= 1,2, . . . , b(1− γ)Nc− 1, a solution is constructed as before; that is, p(ω) :=

1
(1−γ)N−i for ω= 1,2, . . . , i (and p(ω) := 0 otherwise) and q := 1+ i

(1−γ)N−i . Hence this solu-

tion is applicable also to problem (EC.11). If we put i∗ := argmaxi∈{1,2,...,b(1−γ)Nc−1}ψ(i),

then D2 ≥ψ(i∗)> 0.

Before proceeding to construct a primal feasible solution, we again first prove that

ψ(i∗)+ ξ̂(i) ≥ 0 for i= 1,2, . . . , i∗ and that ψ(i∗)+ ξ̂(i) ≤ 0 for i= i∗+1, i∗+2, . . . ,N . If i∗ = 1

then clearly ψ(1)+ ξ̂(1) > 0. For i∗ = 2,3, . . . , b(1−γ)Nc−1, we follow the preceding proof

to obtain that ψ(i∗)≥ψ(i∗− 1) implies ψ(i∗) + ξ̂(i) ≥ 0 for all i= 1,2, . . . , i∗. Similarly, for

i∗ = 1,2, . . . , b(1− γ)Nc − 2 we have that ψ(i∗)≥ ψ(i∗+ 1) implies ψ(i∗) + ξ̂(i) ≤ 0 for all

i= i∗+ 1, i∗+ 2, . . . ,N . When i∗ = b(1− γ)Nc− 1, the following new proof is needed. We

have

cvarγ(ξ
†)≤ 0

=⇒
b(1−γ)Nc∑
ω=1

ξ̂(ω) ≤ 0,

=⇒
∑i∗

ω=1 ξ̂(ω)

(1− γ)N − i∗
+ ξ̂(b(1−γ)Nc) ≤ 0,

=⇒ ψ(i∗) + ξ̂(i) ≤ 0 ∀i= i∗+ 1, i∗+ 2, . . . ,N.

The second implication holds because (1 − γ)N − i∗ = (1 − γ)N − b(1 − γ)Nc + 1 = 1.

Finally, we follow the above proof and know that α := ψ(i∗) is a feasible solution to

problem (EC.10). Therefore,

D2 =ψ(i∗) = max
i∈{1,2,...,b(1−γ)Nc−1}

{ ∑i

ω=1 ξ̂(ω)

(1− γ)N − i

}
= max

i∈{1,2,...,b(1−γ)Nc}

{ ∑i

ω=1 ξ̂(ω)

(1− γ)N − i

}
.

The last implication holds because∑b(1−γ)Nc
ω=1 ξ̂(ω)

(1− γ)N −b(1− γ)Nc
=

b(1−γ)Nc∑
ω=1

ξ̂(ω)×∞=−∞.
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Taking all these situations into account, we have proved the closed-form solution (EC.12).

Hence we can use the result and obtain

ργl(ξl(x, z̃)) =
θ

1− γl
|Al(x)|(p−1)/p +D2

=
θ

1− γl
|Al(x)|(p−1)/p

+ max

{
max

i∈{1,2,...,b(1−γl)Nc}

{∑i

ω=1

(
ξl(x, ẑ(ω)) + θ

1−γl
|Al(x)|(p−1)/p

)
(1− γl)N − i

}
,0

}
.

The result then follows.

EC.1.6. Proof of Theorem 4

If we apply the result of Theorem 2 to problem (15), then the vrptw becomes

Z =
∑
l∈N

θ|Al(x)|
p−1
p

1− γl
+ min

∑
l∈N

αl,

s.t.
1

N

∑
ω∈Ω

(
ξl(x, ẑω) +

θ|Al(x)|
p−1
p

1− γl
+αl

)+

≤ (1− γl)αl ∀l ∈N ,

αl ≥ 0 ∀l ∈N ,
c>x≤B,
x∈X .

(EC.16)

Consider the `1 norm in our definition (9) of the Wasserstein distance. We have p = 1 and so

|Al(x)|(p−1)/p = 1 for all l ∈N . Problem (EC.16) then reduces to

Z =
∑
l∈N

θ

1− γl
+ min

∑
l∈N

αl,

s.t.
1

N

∑
ω∈Ω

((
ξl(x, ẑω) +

θ

1− γl

)
+αl

)+

≤ (1− γl)αl ∀l ∈N ,

αl ≥ 0 ∀l ∈N ,
c>x≤B,
x∈X .

(EC.17)

The condition τ 1 = +∞ indicates that N comprises all customer locations with deadlines, which

is a fixed set. Hence
∑

l∈N
θ

1−γl
is a constant value.

Comparing (EC.17) with the vrptw (16) under the empirical distribution, we conclude that the

former differs from the latter only in (a) adding a constant value (in the objective function) that

does not affect the optimal solution and (b) adding (in the first constraint) a constant value θ
1−γl

to ξl(x, ẑω) for all l ∈N and ω ∈Ω. Given that ξl(x, ẑω) + θ
1−γl

= tl(x, ẑω)−
(
τ l− θ

1−γl

)
, we obtain

the result.
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EC.1.7. Proof of Proposition 4

Toth and Vigo (2014) demonstrate that, in constraint (18), the decision variable vi represents the

“service start time” at node i ∈ N in the deterministic world. It remains to prove that our sri

would imply vi ≤ τ i (i∈N ) so that adding constraint (18) does not remove any feasible x.

As given in Proposition 3, the infeasible fulfillment property of sri implies that a feasible solu-

tion x should satisfy the inequality F-cvarγ(ξi(x, z̃))≤ 0. For i∈N , we also have that

F-cvarγ(ξi(x, z̃))≤ 0

=⇒ F-cvarγ(ti(x, z̃)− τ i)≤ 0

=⇒ F-cvarγ(ti(x, z̃))≤ τ i

=⇒ F-cvar0(ti(x, z̃))≤ τ i

=⇒ EP[ti(x, z̃)]≤ τ i

=⇒ vi ≤ τ i.

These five implications result, respectively, from: our definition (3) of the delay function, the

translation invariance of cvar, the fact that cvar does not decrease with γ; the equality

F-cvar0(ti(x, z̃)) = EP[ti(x, z̃)]; and Proposition 2. The properties of cvar cited here are estab-

lished in Rockafellar and Uryasev (2002).

EC.1.8. Proof of Proposition 5

Consider a route (1, i2, i3, . . . , i, j, l, . . . , iν), where l ∈N and iν ∈Nd. We know from Theorem 3 that

the route is infeasible if, for any l,

cvarγl

(
ξl(x, z̃

†) +
θ

1− γl
|Al(x)|

p−1
p

)
> 0.

By definition of the delay function (3), if we put k := j and k := i, respectively, then

ξl(x, z̃
†)≥max{τ j + z̃†jl, τ l}− τ l

and

ξl(x, z̃
†)≥max

{
τ i + z̃†ij + z̃†jl, τ j + z̃†jl, τ l

}
− τ l.

Considering the facts that (i) |Al(x)|(p−1)/p ≥ 1 because |Al(x)| ≥ 1 and p−1
p
≥ 0, and (ii) cvarγl(ṽ)

is nondecreasing in ṽ, we conclude that if

cvarγl

(
max{τ j + z̃†jl, τ l}− τ l +

θ

1− γl

)
> 0

then (i) cvarγl
(
ξl(x, z̃

†) + θ
1−γl
|Al(x)|(p−1)/p

)
> 0 and (ii) any route passing through arc (j, l) is

infeasible. We therefore let xjl = 0. By the same token, if

cvarγl

(
max

{
max{τ i + z̃†ij, τ j}+ z̃†jl, τ l

}
− τ l +

θ

1− γl

)
> 0,

then any route that passes the consecutive arcs (i, j) and (j, l) is infeasible and so xij +xjl ≤ 1.
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EC.2. Example of Expected Service Start Time

To illustrate Proposition 2, we provide an example in Figure EC.1. Consider the route from node 1

to node 2 to node 3. In deterministic models, the travel times are the mean values; hence, at time 2,

a vehicle can arrive and start the service on time at node 3. In the uncertain world, however, the

arrival time at node 3 is max{0.5,1}+1.2 = 2.2 with probability 1/2 and is 2.3 with probability 1/2.

It follows that the mean value of the uncertain service start time is 2.25—which is underestimated

by an arrival time of 2. It is crucial to our argument that the vehicle’s probability of on-time arrival

is 0. We must conclude that ignoring uncertainty in vehicle routing can lead to poor service with

regard to time windows.

1 2 3

origin depot destination depotcustomer location
time window: [1, +∞]departure time: 0

travel time: 

scenario 1: 0.5 w.p. 50%,

scenario 2: 1.5 w.p. 50%.

time window: [0, 2]

service duration: 0

travel time: 

scenario 1: 1.2 w.p. 50%,

scenario 2: 0.8 w.p. 50%.

Figure EC.1 Example misconception of expected service start time (w.p. = “with probability”)

EC.3. Multi-commodity Flow Formulation

Here we propose an alternative multi-commodity flow formulation for our vrptw. In addition to

the x introduced in Section 2 to represent a feasible routing solution, we also use the continuous

decision variables s= (sla)l∈N , a∈A to trace the routes from depot 1 to nodes in N . Thus we define

the feasible region of (x,s) by

S =



x∈ {0,1}|A|,

s∈R|N |×|A|+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
a∈δ+(i)

xa =
∑

a∈δ−(i)

xa = 1, i∈Nc;∑
a∈δ+(1)

xa ≤m;∑
a∈δ−(i)

xa ≤ 1, i∈Nd;

s1
a = 0, a∈A;
sla ≤ xa, l ∈Nc ∪Nd, a∈A;∑
a∈δ+(1)

sla =
∑

a∈δ−(l)

sla =
∑

a∈δ−(l)

xa, l ∈Nc ∪Nd;∑
a∈δ+(l)

sla = 0, l ∈Nc;∑
a∈δ+(i)

sla−
∑

a∈δ−(i)

sla = 0, l ∈Nc, i∈Nc\{l};∑
(i,j)∈A

qis
l
ij ≤Q, l ∈Nd



. (EC.18)
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The first three constraints in (EC.18) are the same as those in (1); explanations for these con-

straints are given in Section 2. The next five constraints, in the spirit of Adulyasak and Jaillet

(2015), eliminate subtours and trace the partial route from depot 1 to any node l ∈ N . Last is

the capacity constraint. Note that, given the variables s and their constraints, we need not posit

rounded capacity inequalities such as those appearing in (1).

In set S, the decision variables x determine a feasible routing solution and sl (l ∈ Nc ∪ Nd)

corresponds to the partial route—along one of the routes determined by x—from depot 1 to node l.

We specify this route using (1, i2, i3, . . . , iκ−1, iκ, . . . , iν−1, iν), which passes through node l= iκ and

ends at node iν ∈Nd. Then

sla =

{
1 if a∈ {(1, i2), (i2, i3), . . . , (iκ−1, l)},
0 otherwise.

(EC.19)

Hence the continuous decision variables s must be binary.

The representation S for the vrptw is inspired by the work of Adulyasak and Jaillet (2015) and

Zhang et al. (2019a). In particular, Zhang et al. (2019a) extend the tsp formulation of Claus (1984)

to the tsptw, and we extend Zhang et al. (2019a) to the vrptw case. Although Adulyasak and

Jaillet (2015) also formulate a multi-commodity flow formulation for the vrptw, they pose expo-

nentially many rounded capacity inequalities; in contrast, our approach requires only polynomially

many constraints and therefore yields a more compact formulation.

For the studied tsptw, Zhang et al. (2019a) represent the service start time at the given node

as a convex piecewise affine function in the travel times along arcs and in the decision variables.

We now establish the intriguing result that, although the vrptw is generally more complicated

than the tsptw, the same representation is valid for both.

Proposition 6 Suppose we are given a routing solution (x,s) ∈ S and a realization z of travel

times z̃. Then the service start time for each node l ∈N is determined by the function

tl(x,z) = max
k∈N∪{1}

{ ∑
a∈δ−(k)

slaτk +z>(xl−xk)
}
. (EC.20)

Proof: The proof is extended from Zhang et al. (2019a). Recall that we can use (EC.1) to

represent the service start time at node l ∈N ; that is,

tl = max
k∈{1,i2,i3,...,iκ−1,l}

{
τk +

∑
a∈{(k,iυ+1),(iυ+1,iυ+2),...,(iκ−1,l)}

za

}
, (EC.21)

where k= iυ is a node along the path from node 1 to node l.

Next we show the equivalence of our formulations (EC.20) and (EC.21). We put tkl =∑
a∈δ−(k) s

l
aτk +z>(sl− sk) for k ∈N ∪{1} and discuss three separate cases as follows.



ec14 e-companion to Zhang, Zhang, Lim, & Sim: Robust Data-Driven Vehicle Routing

1. When k= 1, we have τ 1 = 0 and s1 = 0; therefore,

t1l =
∑

a∈δ−(1)

slaτ 1 +z>(sl− s1) = z>sl = τ 1 +
∑

a∈{(1,i2),(i2,i3),...,(iκ−1,l)}

za.

Note that t1l ≥ 0 because z ≥ 0 and sl ≥ 0.

2. When k ∈ {i2, i3, . . . , iκ−1, l}∩N , we have
∑

a∈δ−(k) s
l
a = 1 and

tkl =
∑

a∈δ−(k)

slaτk +z>(sl− sk) = τk +
∑

a∈{(k,iυ+1),(iυ+1,iυ+2),...,(iκ−1,l)}

za.

3. When k ∈N \{i2, i3, . . . , iκ−1, l}, we have
∑

a∈δ−(k) s
l
a = 0. Therefore,

tkl =
∑

a∈δ−(k)

slaτk +z>(sl− sk)≤ z>sl ≤ t1l .

The result then follows. �

Now the delay function can be written as

ξl(s,z) = tl(s,z)− τ l (EC.22)

and the vrptw formulation as
min

∑
l∈N

ργl(ξl(s, z̃))

s.t. c>x≤B,
(x,s)∈ S.

(EC.23)

In comparison with (4), the advantage of formulation (EC.23) lies mainly in its compactness.

Hence solutions can be derived via general-purpose solvers and without resorting to sophisticated

approaches, so non-experts may be encouraged to use this approach to solve small instances. That

said, the intrinsic complexity of (EC.23) means that one must design sophisticated approaches to

solve larger instances. Because this formulation involves |N | × |A| more decision variables s, it

could be computationally burdensome to solve the linear relaxations in a branch-and-bound tree.

According to our simulations in Section 7, (4) can be solved more efficiently by the branch-and-

cut approach described in Section 5 than by (EC.23) when solved via the Benders decomposition

approach discussed below.

Observe that the structure of (EC.23) is similar to the formulation of Zhang et al. (2019a).

One can work out a Benders decomposition approach to solve (EC.23) in the framework proposed

by Zhang et al. (2019a). In particular, when fixing the values of decision variables (x,s) in the

restricted master problem, solving the subproblem for each l ∈ N is tantamount to evaluating

the sri ργl(ξl(s, z̃))—for which the closed-form solution is readily available from Theorem 3. We

omit the details and leave the spelling out of a Benders decomposition approach as an exercise for

readers.
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EC.4. Impact of Distributions

Apart from the two-point distribution, we also test the cases of uniform and triangular distributions

of travel times (Adulyasak and Jaillet 2015, Errico et al. 2016). Toward that end, for each arc

a ∈ A we keep the same mean µa and standard deviation σa as in the two-point distribution;

thus the uniform distribution is supported on [µa−
√

3σa, µa +
√

3σa]. We generate an asymmetric

triangular distribution by setting its lower limit at µa− (5/3)
√

(18/13)σa, its upper limit at µa−

(2/3)
√

(18/13)σa, and its mode at µa+(7/3)
√

(18/13)σa. Until now, we have assumed independent

distributions. To test the impact of correlations in distributions, we generate correlated travel times

from the two-point distribution case by adding—for each arc a∈A—a correlated term kaε̃ to each

travel time z̃a. We divide the map uniformly into urban, suburban, and exurban areas based on

their relative centrality; the central area’s greater congestion is captured by putting ka = 1 for an

urban arc, k= 0 for a suburban arc, and k=−1 for an exurban arc. The random noise ε̃ can model

any factor (e.g., the weather) that affects all travel times simultaneously. In our experiment, the

noise ε̃ follows a uniform distribution in [0, σa]. The results are reported in Table EC.1.

We can see that the results are much the same across the various distribution cases. Readers are

therefore referred to Section 7 for related analysis and discussion.
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Table EC.1 Tests on different distributions

Distribution Instance Method
Performance

Cost nLate MaxProb SumProb MaxExp SumExp Early CPU

Two-point

r1

I 1.049 0.00 0.296 2.558 2.41 12.64 540 522
E 1.049 2.83 0.843 4.900 5.82 25.89 492 378
P 1.049 3.25 0.981 4.816 60.99 151.30 550 305

c1

I 1.038 0.00 0.092 0.310 0.42 0.95 238 21
E 1.042 0.00 0.092 0.310 0.42 0.95 174 49
P 1.040 0.00 0.088 0.306 0.42 1.02 327 74

rc1

I 1.051 0.00 0.337 3.217 4.02 20.92 452 374
E 1.048 2.88 0.757 4.847 8.19 32.42 383 529
P 1.048 2.63 0.920 4.029 71.93 132.76 454 400

Uniform

r1

I 1.049 0.00 0.333 1.964 1.61 6.51 541 573
E 1.049 2.92 0.892 4.723 6.39 22.00 444 383
P 1.048 3.58 1.000 4.616 85.47 178.23 497 475

c1

I 1.037 0.00 0.036 0.085 0.14 0.23 202 70
E 1.043 0.00 0.036 0.085 0.14 0.23 180 48
P 1.045 0.00 0.036 0.085 0.14 0.23 284 69

rc1

I 1.052 0.00 0.358 3.008 2.91 15.51 436 564
E 1.049 2.25 0.825 4.443 8.46 28.01 381 367
P 1.048 2.38 1.000 3.734 65.70 130.97 427 513

Triangular

r1

I 1.050 0.00 0.298 2.375 1.77 9.92 513 645
E 1.049 3.42 0.858 4.933 10.09 27.48 462 295
P 1.049 3.42 0.965 4.748 74.49 187.27 546 433

c1

I 1.038 0.00 0.045 0.208 0.29 0.99 223 57
E 1.045 0.00 0.045 0.209 0.29 0.99 162 58
P 1.044 0.00 0.045 0.208 0.29 0.99 285 84

rc1

I 1.050 0.00 0.340 2.722 2.84 15.86 430 401
E 1.049 2.38 0.860 4.043 9.67 29.33 429 643
P 1.049 2.88 1.000 3.935 54.84 99.71 408 410

Correlated

r1

I 1.049 0.00 0.267 2.301 1.92 9.98 529 487
E 1.049 2.92 0.933 4.820 6.79 24.30 475 284
P 1.048 4.00 0.964 4.867 71.83 186.93 531 448

c1

I 1.037 0.00 0.088 0.284 0.40 0.87 176 58
E 1.044 0.00 0.088 0.284 0.40 0.87 193 102
P 1.041 0.00 0.084 0.278 0.40 0.92 175 71

rc1

I 1.051 0.00 0.324 3.159 4.03 21.56 478 488
E 1.049 3.00 0.917 4.406 7.93 28.50 463 297
P 1.048 3.38 0.975 4.191 55.06 120.51 444 537


