Please use this identifier to cite or link to this item:
https://doi.org/10.1103/PhysRevA.81.012331
Title: | Universal dynamical decoupling: Two-qubit states and beyond | Authors: | Mukhtar, M. Saw, T.B. Soh, W.T. Gong, J. |
Issue Date: | 29-Jan-2010 | Citation: | Mukhtar, M., Saw, T.B., Soh, W.T., Gong, J. (2010-01-29). Universal dynamical decoupling: Two-qubit states and beyond. Physical Review A - Atomic, Molecular, and Optical Physics 81 (1) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevA.81.012331 | Abstract: | Uhrig's dynamical decoupling pulse sequence has emerged as a universal and highly promising approach to decoherence suppression. So far, both the theoretical and experimental studies have examined single-qubit decoherence only. This work extends Uhrig's universal dynamical decoupling from one-qubit to two-qubit systems and even to general multilevel quantum systems. In particular, we show that by designing appropriate control Hamiltonians for a two-qubit or a multilevel system, Uhrig's pulse sequence can also preserve a generalized quantum coherence measure to the order of 1+O(TN+1) with only N pulses. Our results lead to a very useful scheme for efficiently locking two-qubit entangled states. Future important applications of Uhrig's pulse sequence in preserving the quantum coherence of multilevel quantum systems can also be anticipated. © 2010 The American Physical Society. | Source Title: | Physical Review A - Atomic, Molecular, and Optical Physics | URI: | http://scholarbank.nus.edu.sg/handle/10635/98525 | ISSN: | 10502947 | DOI: | 10.1103/PhysRevA.81.012331 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.