Please use this identifier to cite or link to this item: https://doi.org/10.1016/S1359-6454(00)00003-3
DC FieldValue
dc.titleUnidirectional solidification of Zn-Rich Zn-Cu peritectic alloys - II. Microstructural length scales
dc.contributor.authorMa, D.
dc.contributor.authorLi, Y.
dc.contributor.authorNg, S.C.
dc.contributor.authorJones, H.
dc.date.accessioned2014-10-16T09:48:03Z
dc.date.available2014-10-16T09:48:03Z
dc.date.issued2000-05-11
dc.identifier.citationMa, D., Li, Y., Ng, S.C., Jones, H. (2000-05-11). Unidirectional solidification of Zn-Rich Zn-Cu peritectic alloys - II. Microstructural length scales. Acta Materialia 48 (8) : 1741-1751. ScholarBank@NUS Repository. https://doi.org/10.1016/S1359-6454(00)00003-3
dc.identifier.issn13596454
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/98517
dc.description.abstractExperimental results are presented of solidification microstructure length scales including η-phase cell spacing, primary ε secondary dendrite arm spacing, size of nonaligned dendrite of primary ε, and volume fraction of primary ε, as functions of alloy concentration (containing up to 7.37 wt% Cu) and growth velocity (ranging from 0.02 to 4.82 mm/s) in the unidirectional solidification of Zn-rich Zn-Cu peritectic alloys. Intercellular spacing (λ) of two-phase cellular structure decreases with increasing growth velocity (V) such that λV 1/2 is constant at a fixed alloy concentration in parametric agreement with the KGT and Hunt-Lu models. The value of λV 1/2 varies from 216 ± 10 to 316 ± 55 μm3/2/s 1/2 with decrease in alloy concentration from 4.94 to 2.17 wt% Cu. These values are much greater than for normal eutectic systems but comparable with monotectic alloys. Dendritic secondary arm spacing (λ2) of primary ε decreases with increasing V such that λ2V1/3 is constant ranging 14.9 ± 0.9 to 75.6 ± 8.1 μm4/3/s1/3 with increase in alloy concentration (C0) from 2.17 to 7.37 wt% Cu, which is in parametric agreement with predictions of arm-coarsening theory. The volume fraction (fε) of primary ε increases with increasing V for Zn-rich Zn-3.37, 4.94 and 7.37 wt% Cu hyperperitectic alloys. Predictions of the Scheil and Sarreal-Abbaschian models show good agreement with the observed fε for Zn-4.94 wt% Cu at moderate V from 0.19 to 2.64 mm/s, but fail at low V of less than 0.16 mm/s and at high V of greater than 3.54 mm/s. The measured average size, Λ, of nonaligned dendrites of primary ε decreases with increasing V such that ΛV 1/2 is constant for a given alloy, increasing from (0.98 ± 0.04) × 103 to (7.2 ± 0.7) × 103 μm3/2/s 1/2 with increase in alloy concentration from 2.17 to 4.94 wt% Cu.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S1359-6454(00)00003-3
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.contributor.departmentMATERIALS SCIENCE
dc.description.doi10.1016/S1359-6454(00)00003-3
dc.description.sourcetitleActa Materialia
dc.description.volume48
dc.description.issue8
dc.description.page1741-1751
dc.description.coden220
dc.identifier.isiut000087094000009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.