Please use this identifier to cite or link to this item:
Title: Tunable thermal entanglement in an effective spin-star system using coupled microcavities
Authors: Yang, W.-L.
Wei, H.
Feng, M.
An, J.-H. 
Keywords: Cavity QED
Heisenberg model
Thermal entanglement
Issue Date: 2009
Citation: Yang, W.-L., Wei, H., Feng, M., An, J.-H. (2009). Tunable thermal entanglement in an effective spin-star system using coupled microcavities. Chinese Physics B 18 (9) : 3677-3686. ScholarBank@NUS Repository.
Abstract: We theoretically explore the possibility of realizing controllable thermal entanglement of effective spins in a four-qubit anisotropic Heisenberg XXZ coupling spin-star system constructed by coupled microcavities. We analyse the dependence of thermal entanglement in this system on temperature, inhomogeneity of the magnetic field, and anisotropy, which can be readily tuned via the external laser fields. The peculiar characteristic and the full controllability of the thermal entanglement are demonstrated to be useful for quantum information processing. © 2009 Chin. Phys. Soc. and IOP Publishing Ltd.
Source Title: Chinese Physics B
ISSN: 16741056
DOI: 10.1088/1674-1056/18/9/012
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Mar 24, 2020

Page view(s)

checked on Mar 28, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.