Please use this identifier to cite or link to this item:
Title: Time-dependent bending rigidity and helical twist of DNA by rearrangement of bound HU protein
Authors: Kundukad, B.
Cong, P.
Van Der Maarel, J.R.C. 
Doyle, P.S.
Issue Date: Sep-2013
Citation: Kundukad, B., Cong, P., Van Der Maarel, J.R.C., Doyle, P.S. (2013-09). Time-dependent bending rigidity and helical twist of DNA by rearrangement of bound HU protein. Nucleic Acids Research 41 (17) : 8280-8288. ScholarBank@NUS Repository.
Abstract: HU is a protein that plays a role in various bacterial processes including compaction, transcription and replication of the genome. Here, we use atomic force microscopy to study the effect of HU on the stiffness and supercoiling of double-stranded DNA. First, we measured the persistence length, height profile, contour length and bending angle distribution of the DNA-HU complex after different incubation times of HU with linear DNA. We found that the persistence and contour length depend on the incubation time. At high concentrations of HU, DNA molecules first become stiff with a larger value of the persistence length. The persistence length then decreases over time and the molecules regain the flexibility of bare DNA after ∼2 h. Concurrently, the contour length shows a slight increase. Second, we measured the change in topology of closed circular relaxed DNA following binding of HU. Here, we observed that HU induces supercoiling over a similar time span as the measured change in persistence length. Our observations can be rationalized in terms of the formation of a nucleoprotein filament followed by a structural rearrangement of the bound HU on DNA. The rearrangement results in a change in topology, an increase in bending flexibility and an increase in contour length through a decrease in helical pitch of the duplex. © 2013 The Author(s). Published by Oxford University Press.
Source Title: Nucleic Acids Research
ISSN: 03051048
DOI: 10.1093/nar/gkt593
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Apr 1, 2020


checked on Jul 5, 2019

Page view(s)

checked on Mar 28, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.