Please use this identifier to cite or link to this item:
Title: The intrinsic load-resisting capacity of kinesin
Authors: Zheng, W.
Fan, D.
Feng, M.
Wang, Z. 
Issue Date: 2009
Citation: Zheng, W., Fan, D., Feng, M., Wang, Z. (2009). The intrinsic load-resisting capacity of kinesin. Physical Biology 6 (3) : -. ScholarBank@NUS Repository.
Abstract: Conventional kinesin is a homodimeric motor protein that is capable of walking unidirectionally along a cytoskeletal filament. While previous experiments indicated unyielding unidirectionality against an opposing load up to the so-called stall force, recent experiments also observed limited processive backwalking under superstall loads. This theoretical study seeks to elucidate the molecular mechanical basis for kinesin's steps over the full range of external loads that can possibly be applied to the dimer. We found that kinesin's load-resisting capacity is largely determined by a synergic ratchet-and-pawl mechanism inherent in the dimer. Load susceptibility of this inner molecular mechanical mechanism underlies kinesin's response to various levels of external loads. Computational implementation of the mechanism enabled us to rationalize major trends observed experimentally in kinesin's stalemate and consecutive back steps. The study also predicts several distinct features of kinesin's load-affected motility, which are seemingly counterintuitive but readily verifiable by future experiment. © 2009 IOP Publishing Ltd.
Source Title: Physical Biology
ISSN: 14783975
DOI: 10.1088/1478-3975/6/3/036002
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 26, 2023


checked on Jan 26, 2023

Page view(s)

checked on Feb 2, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.