Please use this identifier to cite or link to this item:
Title: Suppression of oxidation in nickel germanosilicides by Pt incorporation
Authors: Rahman, M.A.
Osipowicz, T. 
Pey, K.L.
Jin, L.J.
Choi, W.K.
Chi, D.Z.
Antoniadis, D.A.
Fitzgerald, E.A.
Isaacson, D.M.
Issue Date: 31-Oct-2005
Citation: Rahman, M.A., Osipowicz, T., Pey, K.L., Jin, L.J., Choi, W.K., Chi, D.Z., Antoniadis, D.A., Fitzgerald, E.A., Isaacson, D.M. (2005-10-31). Suppression of oxidation in nickel germanosilicides by Pt incorporation. Applied Physics Letters 87 (18) : 1-3. ScholarBank@NUS Repository.
Abstract: The effect of oxidation of 10 nm Ni Si0.75 Ge0.25 and 10 nm Ni (10 at. %Pt) Si0.75 Ge0.25 thin films at annealing temperatures ranging from 400 to 800°C has been studied in detail by Rutherford backscattering spectrometry analysis, cross-sectional transmission electron microscopy, energy dispersive x-ray, and sheet resistance measurements. It is observed that for the films without Pt incorporation, almost two-thirds of the germanosilicide is oxidized. The incorporation of a Pt (10 at. %) into Ni not only dramatically reduces the oxidation of the germanosilicides, but also improves the interfacial roughness and morphology. The integral amount of oxygen found in the germanosilicide in the Ni (10 at. %Pt) Si0.75 Si0.25 films [(1.1±0.17) × 1017 at. cm2] is approximately four times less than that of Ni Si0.75 Si0.25 [(4.0±0.28) × 1017 at. cm2]. This result is explained in terms of the roles of the higher melting point and bond energy of PtSi in NiSi and NiGe, and much lower free energy of the formation of platinum oxide. © 2005 American Institute of Physics.
Source Title: Applied Physics Letters
ISSN: 00036951
DOI: 10.1063/1.2120902
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 26, 2023


checked on Jan 18, 2023

Page view(s)

checked on Jan 26, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.