Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevLett.111.246801
DC FieldValue
dc.titleStrain-engineered surface transport in Si(001): Complete isolation of the surface state via tensile strain
dc.contributor.authorZhou, M.
dc.contributor.authorLiu, Z.
dc.contributor.authorWang, Z.
dc.contributor.authorBai, Z.
dc.contributor.authorFeng, Y.
dc.contributor.authorLagally, M.G.
dc.contributor.authorLiu, F.
dc.date.accessioned2014-10-16T09:42:12Z
dc.date.available2014-10-16T09:42:12Z
dc.date.issued2013-12-09
dc.identifier.citationZhou, M., Liu, Z., Wang, Z., Bai, Z., Feng, Y., Lagally, M.G., Liu, F. (2013-12-09). Strain-engineered surface transport in Si(001): Complete isolation of the surface state via tensile strain. Physical Review Letters 111 (24) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevLett.111.246801
dc.identifier.issn00319007
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/98032
dc.description.abstractBy combining density functional theory, nonequilibrium Green's function formulism and effective-Hamiltonian approaches, we demonstrate strain-engineered surface transport in Si(001), with the complete isolation of the Si surface states from the bulk bands. Our results show that sufficient tensile strain can effectively remove the overlap between the surface valence state and the bulk valence band, because of the drastically different deformation potentials. Isolation of the surface valence state is possible with a tensile strain of ∼1.5%, a value that is accessible experimentally. Quantum transport simulations of a chemical sensing device based on strained Si(001) surface confirm the dominating surface conductance, giving rise to an enhanced molecular sensitivity. Our results show promise for using strain engineering to further our ability to manipulate surface states for quantum information processing and surface state-based devices. © 2013 American Physical Society.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1103/PhysRevLett.111.246801
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1103/PhysRevLett.111.246801
dc.description.sourcetitlePhysical Review Letters
dc.description.volume111
dc.description.issue24
dc.description.page-
dc.description.codenPRLTA
dc.identifier.isiut000328699200021
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

16
checked on Jul 22, 2019

WEB OF SCIENCETM
Citations

15
checked on Jul 22, 2019

Page view(s)

59
checked on Jul 20, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.