Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevE.75.016201
DC FieldValue
dc.titleStability of quantum motion in regular systems: A uniform semiclassical approach
dc.contributor.authorWang, W.-G.
dc.contributor.authorCasati, G.
dc.contributor.authorLi, B.
dc.date.accessioned2014-10-16T09:41:58Z
dc.date.available2014-10-16T09:41:58Z
dc.date.issued2007
dc.identifier.citationWang, W.-G., Casati, G., Li, B. (2007). Stability of quantum motion in regular systems: A uniform semiclassical approach. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 75 (1) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevE.75.016201
dc.identifier.issn15393755
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/98012
dc.description.abstractWe study the stability of quantum motion of classically regular systems in the presence of small perturbations. On the basis of a uniform semiclassical theory we derive the fidelity decay which displays a quite complex behavior, from Gaussian to power law decay t-α, with 1≤α≤2. Semiclassical estimates are given for the time scales separating the different decaying regions, and numerical results are presented which confirm our theoretical predictions. © 2007 The American Physical Society.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1103/PhysRevE.75.016201
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1103/PhysRevE.75.016201
dc.description.sourcetitlePhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
dc.description.volume75
dc.description.issue1
dc.description.page-
dc.description.codenPLEEE
dc.identifier.isiut000243893700019
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

18
checked on Mar 16, 2023

WEB OF SCIENCETM
Citations

24
checked on Mar 16, 2023

Page view(s)

161
checked on Mar 16, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.