Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/97621
Title: Progress of pattern dynamics in plasma waves
Authors: Qiao, B. 
Zhou, C.T.
He, X.T.
Lai, C.H. 
Keywords: Homoclinic chaos
Nonlinear Schrödinger equations
Pattern dynamics
Plasma waves
Issue Date: Nov-2008
Citation: Qiao, B.,Zhou, C.T.,He, X.T.,Lai, C.H. (2008-11). Progress of pattern dynamics in plasma waves. Communications in Computational Physics 4 (5) : 1129-1150. ScholarBank@NUS Repository.
Abstract: This paper is concerned with the pattern dynamics of the generalized nonlinear Schrödinger equations (NSEs) related with various nonlinear physical problems in plasmas. Our theoretical and numerical results show that the higher-order nonlinear effects, acting as a Hamiltonian perturbation, break down the NSE integrability and lead to chaotic behaviors. Correspondingly, coherent structures are destroyed and replaced by complex patterns. Homoclinic orbit crossings in the phase space and stochastic partition of energy in Fourier modes show typical characteristics of the stochastic motion. Our investigations show that nonlinear phenomena, such as wave turbulence and laser filamentation, are associated with the homoclinic chaos. In particular, we found that the unstable manifolds W(u) possessing the hyperbolic fixed point correspond to an initial phase θ = 45° and 225°, and the stable manifolds W(s) correspond to θ = 135° and 315°. © 2008 Global-Science Press.
Source Title: Communications in Computational Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/97621
ISSN: 18152406
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.