Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.ssc.2010.05.034
DC FieldValue
dc.titleMicromagnetic calculation of hysteresis loops in exchange-coupled nanolayers
dc.contributor.authorZhao, G.P.
dc.contributor.authorChen, L.
dc.contributor.authorHuang, C.W.
dc.contributor.authorGuo, N.L.
dc.contributor.authorFeng, Y.P.
dc.date.accessioned2014-10-16T09:32:25Z
dc.date.available2014-10-16T09:32:25Z
dc.date.issued2010-08
dc.identifier.citationZhao, G.P., Chen, L., Huang, C.W., Guo, N.L., Feng, Y.P. (2010-08). Micromagnetic calculation of hysteresis loops in exchange-coupled nanolayers. Solid State Communications 150 (31-32) : 1486-1488. ScholarBank@NUS Repository. https://doi.org/10.1016/j.ssc.2010.05.034
dc.identifier.issn00381098
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/97197
dc.description.abstractIn this study, hysteresis loops have been investigated based on a self-contained micromagnetic model for various exchange-coupled layer systems, including oriented hard/soft multilayers and double-layer systems with perpendicular easy axes. In the former case, the soft layer acts as the nucleation center while the hard layer plays the role of pinning. Both the nucleation field and coercivity decrease with the thickness of the soft layer Ls while they are not sensitive to that of the hard one, L h. The reduction of the remanence due to the deterioration of the squareness of the hysteresis loop accompanying the increase of Ls could be compensated by the improvement of the saturation magnetization contributed by the soft layer. The optimum thickness at which the largest energy product could be achieved is given. In the latter case, the misaligned layer acts in a similar role to that of the soft layer in hard/soft multilayers considering that it nucleates the reversed domain walls and decreases the coercivity significantly. As the thickness of the misaligned layer increases, both the remanence and the coercivity decrease and the loop loses its rectangularity. As a result, the energy product shrinks, suggesting that the misaligned grains affect the energy product greatly. In the case where the thicknesses of the aligned and misaligned layers are equal and increase simultaneously, the coercivity increases while the remanence decreases. Thus an optimum thickness for largest energy product also exists. © 2010 Elsevier Ltd. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.ssc.2010.05.034
dc.sourceScopus
dc.subjectA. Composite magnets
dc.subjectC. Multilayers
dc.subjectD. Hysteresis loop
dc.subjectE. Micromagnetics
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1016/j.ssc.2010.05.034
dc.description.sourcetitleSolid State Communications
dc.description.volume150
dc.description.issue31-32
dc.description.page1486-1488
dc.description.codenSSCOA
dc.identifier.isiut000280176000015
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

13
checked on Jul 21, 2021

WEB OF SCIENCETM
Citations

13
checked on Jul 21, 2021

Page view(s)

79
checked on Jul 13, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.