Please use this identifier to cite or link to this item: https://doi.org/10.1002/marc.200900818
Title: Injectable biodegradable polyethylene glycol/ RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stern cellsa
Authors: Qiong Liu, S. 
Tian, Q. 
Wang, L. 
Hedrick, J.L.
Po Hui, J.H.
Yan Yang, Y.
Ee, P.L.R. 
Keywords: Biomaterials
Chondrogenic differentiation
Human mesenchymal stem cells
Hydrogels
Injectable peg hydrogel
RGD
Issue Date: 1-Jul-2010
Citation: Qiong Liu, S., Tian, Q., Wang, L., Hedrick, J.L., Po Hui, J.H., Yan Yang, Y., Ee, P.L.R. (2010-07-01). Injectable biodegradable polyethylene glycol/ RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stern cellsa. Macromolecular Rapid Communications 31 (13) : 1148-1154. ScholarBank@NUS Repository. https://doi.org/10.1002/marc.200900818
Abstract: (Figure Presented) In this study, an injectable and biodegradable poly(ethylene glycol) (PEG)/arginine-glycine-aspartic (RGD) peptide hybrid hydrogel has been synthesized and used as a biomimetic scaffold for encapsulation of human mesenchymal stem cells (hMSCs). Tetrahydroxyl PEG was functionalized with acrylate, and then reacted with thiol-containing peptide (RGD). Gelation occurred within 30 min with the addition of cells and PEG-dithiol via Michael addition. The hydrogels synthesized with a peptide concentration of 1.0-5.0 mM achieved significantly greater cell viability when compared to the hydrogels without the RGD peptide. However, the effect of RGD on chondrogenesis was found to be dose-dependent. Immunohistology studies demonstrated that hMSCs encapsulated in the hydrogel matrix with 1.0 mM RGD and TGF-ß3 showed enhanced positive staining for aggrecan and type II collagen as compared to that with 5.0 mM RGD and unmodified PEG hydrogels. RT-PCR results further revealed that the cells in hydrogels with 1 mM RGD expressed significantly higher levels of type II collagen than those in PEG hydogels without RGD peptide. These findings have demonstrated that the PEG-RGD hydrogels can be a promising scaffold to deliver hMSCs for cartilage repair. © 2010 WILEY-VCH Verlag GmbH & Co. KCaA, Weinheim.
Source Title: Macromolecular Rapid Communications
URI: http://scholarbank.nus.edu.sg/handle/10635/96941
ISSN: 10221336
DOI: 10.1002/marc.200900818
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.