Please use this identifier to cite or link to this item:
https://doi.org/10.1002/marc.200900818
Title: | Injectable biodegradable polyethylene glycol/ RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stern cellsa | Authors: | Qiong Liu, S. Tian, Q. Wang, L. Hedrick, J.L. Po Hui, J.H. Yan Yang, Y. Ee, P.L.R. |
Keywords: | Biomaterials Chondrogenic differentiation Human mesenchymal stem cells Hydrogels Injectable peg hydrogel RGD |
Issue Date: | 1-Jul-2010 | Citation: | Qiong Liu, S., Tian, Q., Wang, L., Hedrick, J.L., Po Hui, J.H., Yan Yang, Y., Ee, P.L.R. (2010-07-01). Injectable biodegradable polyethylene glycol/ RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stern cellsa. Macromolecular Rapid Communications 31 (13) : 1148-1154. ScholarBank@NUS Repository. https://doi.org/10.1002/marc.200900818 | Abstract: | (Figure Presented) In this study, an injectable and biodegradable poly(ethylene glycol) (PEG)/arginine-glycine-aspartic (RGD) peptide hybrid hydrogel has been synthesized and used as a biomimetic scaffold for encapsulation of human mesenchymal stem cells (hMSCs). Tetrahydroxyl PEG was functionalized with acrylate, and then reacted with thiol-containing peptide (RGD). Gelation occurred within 30 min with the addition of cells and PEG-dithiol via Michael addition. The hydrogels synthesized with a peptide concentration of 1.0-5.0 mM achieved significantly greater cell viability when compared to the hydrogels without the RGD peptide. However, the effect of RGD on chondrogenesis was found to be dose-dependent. Immunohistology studies demonstrated that hMSCs encapsulated in the hydrogel matrix with 1.0 mM RGD and TGF-ß3 showed enhanced positive staining for aggrecan and type II collagen as compared to that with 5.0 mM RGD and unmodified PEG hydrogels. RT-PCR results further revealed that the cells in hydrogels with 1 mM RGD expressed significantly higher levels of type II collagen than those in PEG hydogels without RGD peptide. These findings have demonstrated that the PEG-RGD hydrogels can be a promising scaffold to deliver hMSCs for cartilage repair. © 2010 WILEY-VCH Verlag GmbH & Co. KCaA, Weinheim. | Source Title: | Macromolecular Rapid Communications | URI: | http://scholarbank.nus.edu.sg/handle/10635/96941 | ISSN: | 10221336 | DOI: | 10.1002/marc.200900818 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.