Please use this identifier to cite or link to this item: https://doi.org/10.1038/nature11253
DC FieldValue
dc.titleGate-tuning of graphene plasmons revealed by infrared nano-imaging
dc.contributor.authorFei, Z.
dc.contributor.authorRodin, A.S.
dc.contributor.authorAndreev, G.O.
dc.contributor.authorBao, W.
dc.contributor.authorMcLeod, A.S.
dc.contributor.authorWagner, M.
dc.contributor.authorZhang, L.M.
dc.contributor.authorZhao, Z.
dc.contributor.authorThiemens, M.
dc.contributor.authorDominguez, G.
dc.contributor.authorFogler, M.M.
dc.contributor.authorCastro Neto, A.H.
dc.contributor.authorLau, C.N.
dc.contributor.authorKeilmann, F.
dc.contributor.authorBasov, D.N.
dc.date.accessioned2014-10-16T09:26:25Z
dc.date.available2014-10-16T09:26:25Z
dc.date.issued2012-07-05
dc.identifier.citationFei, Z., Rodin, A.S., Andreev, G.O., Bao, W., McLeod, A.S., Wagner, M., Zhang, L.M., Zhao, Z., Thiemens, M., Dominguez, G., Fogler, M.M., Castro Neto, A.H., Lau, C.N., Keilmann, F., Basov, D.N. (2012-07-05). Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 486 (7405) : 82-85. ScholarBank@NUS Repository. https://doi.org/10.1038/nature11253
dc.identifier.issn00280836
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/96691
dc.description.abstractSurface plasmons are collective oscillations of electrons in metals or semiconductors that enable confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium-graphene-is amenable to convenient tuning of its electronic and optical properties by varying the applied voltage. Here, using infrared nano-imaging, we show that common graphene/SiO 2/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200nanometres at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and the wavelength of these plasmons by varying the gate voltage. Using plasmon interferometry, we investigated losses in graphene by exploring real-space profiles of plasmon standing waves formed between the tip of our nano-probe and the edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merit of our tunable graphene devices surpass those of common metal-based structures. © 2012 Macmillan Publishers Limited. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1038/nature11253
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1038/nature11253
dc.description.sourcetitleNature
dc.description.volume486
dc.description.issue7405
dc.description.page82-85
dc.description.codenNATUA
dc.identifier.isiut000305982900054
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

1,213
checked on Aug 10, 2020

WEB OF SCIENCETM
Citations

1,189
checked on Aug 10, 2020

Page view(s)

97
checked on Aug 1, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.