Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0167-2789(01)00223-8
DC FieldValue
dc.titleFourier-Bessel analysis of patterns in a circular domain
dc.contributor.authorGuan, S.
dc.contributor.authorLai, C.-H.
dc.contributor.authorWei, G.W.
dc.date.accessioned2014-10-16T09:26:11Z
dc.date.available2014-10-16T09:26:11Z
dc.date.issued2001-05-01
dc.identifier.citationGuan, S., Lai, C.-H., Wei, G.W. (2001-05-01). Fourier-Bessel analysis of patterns in a circular domain. Physica D: Nonlinear Phenomena 151 (2-4) : 83-98. ScholarBank@NUS Repository. https://doi.org/10.1016/S0167-2789(01)00223-8
dc.identifier.issn01672789
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/96671
dc.description.abstractThis paper explores the use of the Fourier-Bessel analysis for characterizing patterns in a circular domain. A set of stable patterns is found to be well-characterized by the Fourier-Bessel functions. Most patterns are dominated by a principal Fourier-Bessel mode [n, m] which has the largest Fourier-Bessel decomposition amplitude when the control parameter R is close to a corresponding non-trivial root (ρn,m) of the Bessel function. Moreover, when the control parameter is chosen to be close to two or more roots of the Bessel function, the corresponding principal Fourier-Bessel modes compete to dominate the morphology of the patterns. © 2001 Elsevier Science B.V.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0167-2789(01)00223-8
dc.sourceScopus
dc.subjectCahn-Hilliard equation
dc.subjectCircular domain
dc.subjectFourier-Bessel analysis
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.contributor.departmentCOMPUTATIONAL SCIENCE
dc.description.doi10.1016/S0167-2789(01)00223-8
dc.description.sourcetitlePhysica D: Nonlinear Phenomena
dc.description.volume151
dc.description.issue2-4
dc.description.page83-98
dc.description.codenPDNPD
dc.identifier.isiut000168775400001
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.