Please use this identifier to cite or link to this item:
Title: Ergodicity of the stochastic Nosé-Hoover heat bath
Authors: Lo, W.C.
Li, B. 
Keywords: Fokker-Planck equation
Markovian approximation
Multiplicative noise
Nosé-Hoover equation
Stochastic process
Issue Date: Jul-2010
Citation: Lo, W.C., Li, B. (2010-07). Ergodicity of the stochastic Nosé-Hoover heat bath. Journal of the Physical Society of Japan 79 (7) : -. ScholarBank@NUS Repository.
Abstract: We numerically study the ergodicity of the stochastic Nosé-Hoover heat bath whose formalism is based on the Markovian approximation for the Nosé-Hoover equation [J. Phys. Soc. Jpn.77(2008)103001]. The approximation leads to a Langevin-like equation driven by a fluctuating dissipative force and multiplicative Gaussian white noise. The steady state solution of the associated Fokker-Planck equation is the canonical distribution. We investigate the dynamics of this method for the case of (i) free particle, (ii) nonlinear oscillators and (iii) lattice chains. We derive the Fokker-Planck equation for the free particle and present approximate analytical solution for the stationary distribution in the context of the Markovian approximation. Numerical simulation results for nonlinear oscillators show that this method results in a Gaussian distribution for the particles velocity. We also employ the method as heat baths to study nonequilibrium heat flow in one-dimensional Fermi-Pasta-Ulam (FPU-β) and Frenkel-Kontorova (FK) lattices. The establishment of well-defined temperature profiles are observed only when the lattice size is large. Our results provide numerical justification for such Markovian approximation for classical single-and many-body systems. © 2010 The Physical Society of Japan.
Source Title: Journal of the Physical Society of Japan
ISSN: 00319015
DOI: 10.1143/JPSJ.79.074402
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Oct 11, 2021


checked on Oct 11, 2021

Page view(s)

checked on Oct 14, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.