Please use this identifier to cite or link to this item:
Title: Effects of microstructure on the properties of ferroelectric lead zirconate titanate (PZT) thin films
Authors: Goh, W.C. 
Yao, K.
Ong, C.K. 
Issue Date: Oct-2005
Citation: Goh, W.C., Yao, K., Ong, C.K. (2005-10). Effects of microstructure on the properties of ferroelectric lead zirconate titanate (PZT) thin films. Applied Physics A: Materials Science and Processing 81 (5) : 1089-1093. ScholarBank@NUS Repository.
Abstract: Lead zirconate titanate (PZT) thin films were prepared with pulsed laser deposition and sol-gel techniques. The PZT films fabricated by these two techniques have similar randomly oriented single perovskite phases, but the film derived from the pulsed laser deposition exhibits a more compact and flat morphology. The dielectric, ferroelectric, and piezoelectric properties of the two kinds of films are comparatively characterized and discussed. It is observed that a denser microstructure would lead to a significantly higher dielectric constant and remanent polarization and a much lower coercive electric field, but only a relatively slight enhancement on the piezoelectric constant. The film with a looser microstructure could have a substantially higher piezoelectric voltage constant g33 due to the much lower dielectric constant. Our results and discussion provide a better understanding of the relationship between the microstructure and the film properties, which is essential in order to tailor the microstructure and hence determine the performance aiming at a specific application. © Springer-Verlag 2004.
Source Title: Applied Physics A: Materials Science and Processing
ISSN: 09478396
DOI: 10.1007/s00339-004-2964-8
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.