Please use this identifier to cite or link to this item: https://doi.org/10.1088/0305-4470/34/36/317
DC FieldValue
dc.titleCorrelations of chaotic eigenfunctions: A semiclassical analysis
dc.contributor.authorLi, B.
dc.contributor.authorRouben, D.C.
dc.date.accessioned2014-10-16T09:19:39Z
dc.date.available2014-10-16T09:19:39Z
dc.date.issued2001-09-14
dc.identifier.citationLi, B., Rouben, D.C. (2001-09-14). Correlations of chaotic eigenfunctions: A semiclassical analysis. Journal of Physics A: Mathematical and General 34 (36) : 7381-7391. ScholarBank@NUS Repository. https://doi.org/10.1088/0305-4470/34/36/317
dc.identifier.issn03054470
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/96116
dc.description.abstractWe derive a semiclassical expression for an energy-smoothed autocorrelation function defined on a group of eigenstates of the Schrödinger equation. The system we consider is an energy-conserved Hamiltonian system possessing time-invariant symmetry. The energy-smoothed autocorrelation function is expressed as a sum of three terms. The first one is analogous to Berry's conjecture, which is a Bessel function of the zeroth order. The second and the third terms are trace formulae made from special trajectories. The second term is found to be direction dependent in the case of spacing averaging, which agrees qualitatively with previous numerical observations in high-lying eigenstates of a chaotic billiard.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1088/0305-4470/34/36/317
dc.description.sourcetitleJournal of Physics A: Mathematical and General
dc.description.volume34
dc.description.issue36
dc.description.page7381-7391
dc.identifier.isiut000171597000019
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

6
checked on Apr 9, 2021

WEB OF SCIENCETM
Citations

6
checked on Apr 9, 2021

Page view(s)

81
checked on Apr 11, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.