Please use this identifier to cite or link to this item: https://doi.org/10.1142/S0217751X13501376
DC FieldValue
dc.titleAction with acceleration I: Euclidean hamiltonian and path integral
dc.contributor.authorBaaquie, B.E.
dc.date.accessioned2014-10-16T09:15:06Z
dc.date.available2014-10-16T09:15:06Z
dc.date.issued2013-10-30
dc.identifier.citationBaaquie, B.E. (2013-10-30). Action with acceleration I: Euclidean hamiltonian and path integral. International Journal of Modern Physics A 28 (27) : -. ScholarBank@NUS Repository. https://doi.org/10.1142/S0217751X13501376
dc.identifier.issn0217751X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/95725
dc.description.abstractAn action having an acceleration term in addition to the usual velocity term is analyzed. The quantum mechanical system is directly defined for Euclidean time using the path integral. The Euclidean Hamiltonian is shown to yield the acceleration Lagrangian and the path integral with the correct boundary conditions. Due to the acceleration term, the state space depends on both position and velocity - and hence the Euclidean Hamiltonian depends on two degrees of freedom. The Hamiltonian for the acceleration system is non-Hermitian and can be mapped to a Hermitian Hamiltonian using a similarity transformation; the matrix elements of the similarity transformation are explicitly evaluated. © 2013 World Scientific Publishing Company.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1142/S0217751X13501376
dc.sourceScopus
dc.subjectEconomics
dc.subjectLinear algebra
dc.subjectQuantum mechanics
dc.subjectQuantum systems with finite Hilbert space
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1142/S0217751X13501376
dc.description.sourcetitleInternational Journal of Modern Physics A
dc.description.volume28
dc.description.issue27
dc.description.page-
dc.description.codenIMPAE
dc.identifier.isiut000326625700007
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Aug 4, 2020

WEB OF SCIENCETM
Citations

1
checked on Aug 4, 2020

Page view(s)

69
checked on Aug 1, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.