Please use this identifier to cite or link to this item:
Title: Manipulating the electronic and chemical properties of graphene via molecular functionalization
Authors: Mao, H.Y. 
Lu, Y.H. 
Lin, J.D.
Zhong, S.
Wee, A.T.S. 
Chen, W. 
Keywords: Bandgap opening
Molecular sensors
Surface transfer doping
Issue Date: May-2013
Citation: Mao, H.Y., Lu, Y.H., Lin, J.D., Zhong, S., Wee, A.T.S., Chen, W. (2013-05). Manipulating the electronic and chemical properties of graphene via molecular functionalization. Progress in Surface Science 88 (2) : 132-159. ScholarBank@NUS Repository.
Abstract: Graphene, a single atomic layer of sp2-hybridized carbon atoms arranged in a hexagonal structure and the Nobel winning material in 2010, has attracted extensive research attention in the last few years due to its outstanding physical, chemical, electrical, optical and mechanical properties. To further extend its potential applications, intensive research efforts have been devoted to the functionalization of graphene. Examples include improving graphene solubility by attaching different chemical functional groups to its basal plane, modulating the charge carrier type and concentration via surface transfer doping by coating it with various metals films or organic molecules, improving the bio-selectivity by decorating it with different π-conjugated organic molecules, and so on. Different methods have been developed to functionalize graphene. Among them, non-covalent molecular functionalization represents one of the most effective and promising methods. The extended π-conjugation is largely preserved without creating extensive structural defects on the graphene sheet, thereby retaining the high charge carrier mobility. In this review, a brief summary about different functionalization methods of graphene and its derivatives by covalent and non-covalent interactions will be presented, with particular focus on the non-covalent molecular functionalization. A broad review of the applications of non-covalently functionalized graphene and its derivatives will be presented in detail, including field-effect-transistors, organic optoelectronics, and molecular sensing. © 2013 Elsevier Ltd. All rights reserved.
Source Title: Progress in Surface Science
ISSN: 00796816
DOI: 10.1016/j.progsurf.2013.02.001
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Aug 16, 2022


checked on Aug 16, 2022

Page view(s)

checked on Aug 18, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.