Please use this identifier to cite or link to this item:
https://doi.org/10.1109/ICASSP.2010.5495301
DC Field | Value | |
---|---|---|
dc.title | Resolution selective change detection in satellite images | |
dc.contributor.author | Celik, T. | |
dc.contributor.author | Curtis, C.V. | |
dc.date.accessioned | 2014-10-16T08:48:30Z | |
dc.date.available | 2014-10-16T08:48:30Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | Celik, T., Curtis, C.V. (2010). Resolution selective change detection in satellite images. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings : 970-973. ScholarBank@NUS Repository. https://doi.org/10.1109/ICASSP.2010.5495301 | |
dc.identifier.isbn | 9781424442966 | |
dc.identifier.issn | 15206149 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/95493 | |
dc.description.abstract | In this paper, we propose a novel method for unsupervised change detection in satellite images. A feature vector for each pixel is extracted using the multiresolution representation of the difference image which is computed from the multitemporal satellite images of the same scene acquired at different time instances. A metric for automatically estimating the number of resolution levels used in multiresolution analysis is proposed. The dimensionality of each feature vector is reduced using principal component analysis (PCA). The feature vectors are then classified into "changed" and "unchanged" classes using k-means clustering with k = 2 to achieve a change detection map. Results are shown on real data and comparisons with the state-of-the-art techniques on advanced synthetic aperture radar (ASAR) images are provided. ©2010 IEEE. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/ICASSP.2010.5495301 | |
dc.source | Scopus | |
dc.subject | Change detection | |
dc.subject | Multiresolution analysis | |
dc.subject | Multitemporal satellite images | |
dc.subject | Remote sensing | |
dc.subject | Undecimated discrete wavelet transform | |
dc.type | Conference Paper | |
dc.contributor.department | CHEMISTRY | |
dc.description.doi | 10.1109/ICASSP.2010.5495301 | |
dc.description.sourcetitle | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings | |
dc.description.page | 970-973 | |
dc.description.coden | IPROD | |
dc.identifier.isiut | 000287096001011 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
SCOPUSTM
Citations
1
checked on Jan 30, 2023
WEB OF SCIENCETM
Citations
1
checked on Jan 30, 2023
Page view(s)
153
checked on Feb 2, 2023
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.