Please use this identifier to cite or link to this item:
Title: Thermal-induced chemical modification of palladium acetate on the submicrometer scale by in situ scanning thermal microscopy
Authors: Ng, H.T.
Chew, V.H.T.
Loh, M.F.C.
Tan, K.L. 
Chan, L.
Li, S.F.Y. 
Issue Date: 30-Mar-1999
Citation: Ng, H.T., Chew, V.H.T., Loh, M.F.C., Tan, K.L., Chan, L., Li, S.F.Y. (1999-03-30). Thermal-induced chemical modification of palladium acetate on the submicrometer scale by in situ scanning thermal microscopy. Langmuir 15 (7) : 2425-2430. ScholarBank@NUS Repository.
Abstract: In this paper, a new method for studying thermally induced surface reactions with submicrometer scale resolution is discussed. Thermal-induced chemical modification of palladium acetate (Pd(OAc)2) has been successfully demonstrated via a scanning thermal microscope that permits sequential temperature ramping of its resistive thermal probe. In-situ thermal conductivity contrast and dynamic morphological evolutions of the thermal decomposition process have been monitored with spatial resolution in the submicrometer length scale regime to reveal interesting phenomena whereby drastic variations in both thermal conductivity contrast and topography were observed at its thermal degradation temperature range. At 523 K, thermal-induced modification was found to occur predominantly at the peripherals of the Pd(OAc)2 islands. However, almost instantaneous transformation to palladium (Pd) metal took place locally at 553 K within the thermal probe's dwell time of ca. 5 ms at each pixel point. The chemical identity of the newly formed Pd could be identified conveniently due to its distinct thermal conductivity contrast with its surroundings and subsequently confirmed by X-ray photoelectron spectroscopic (XPS) studies.
Source Title: Langmuir
ISSN: 07437463
DOI: 10.1021/la981230i
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.