Please use this identifier to cite or link to this item: https://doi.org/10.1002/cphc.200700611
DC FieldValue
dc.titleMolecular diffusion measurement in lipid bilayers over wide concentration ranges: A comparative study
dc.contributor.authorGuo, L.
dc.contributor.authorHar, J.Y.
dc.contributor.authorSankaran, J.
dc.contributor.authorHong, Y.
dc.contributor.authorKannan, B.
dc.contributor.authorWohland, T.
dc.date.accessioned2014-10-16T08:34:27Z
dc.date.available2014-10-16T08:34:27Z
dc.date.issued2008-04-04
dc.identifier.citationGuo, L., Har, J.Y., Sankaran, J., Hong, Y., Kannan, B., Wohland, T. (2008-04-04). Molecular diffusion measurement in lipid bilayers over wide concentration ranges: A comparative study. ChemPhysChem 9 (5) : 721-728. ScholarBank@NUS Repository. https://doi.org/10.1002/cphc.200700611
dc.identifier.issn14394235
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/94302
dc.description.abstractMolecular diffusion in biological membranes is a determining factor in cell signaling and cell function. In the past few decades, three main fluorescence spectroscopy techniques have emerged that are capable of measuring molecular diffusion in artificial and biological membranes at very different concentration ranges and spatial resolutions. The widely used methods of fluorescence recovery after photobleaching (FRAP) and single-particle tracking (SPT) can determine absolute diffusion coefficients at high (>100 μm-2) and very low surface concentrations (single-molecule level), respectively. Fluorescence correlation spectroscopy (FCS), on the other hand, is well-suited for the intermediate concentration range of about 0.1-100 μm-2. However, FCS in general requires calibration with a standard dye of known diffusion coefficient, and yields only relative measurements with respect to the calibration. A variant of FCS, z-scan FCS, is calibration-free for membrane measurements, but requires several experiments at different well-controlled focusing positions. A recently established FCS method, electron-multiplying charge-coupled-device-based total internal reflection FCS (TIR-FCS), referred to here as imaging TIR-FCS (ITIR-FCS), is also independent of calibration standards, but to our knowledge no direct comparison between these different methods has been made. Herein, we seek to establish a comparison between FRAP, SPT, FCS, and ITIR-FCS by measuring the lateral diffusion coefficients in two model systems, namely, supported lipid bilayers and giant unilamellar vesicles. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1002/cphc.200700611
dc.sourceScopus
dc.subjectBilayers
dc.subjectDiffusion coefficients
dc.subjectFluorescence spectroscopy
dc.subjectLipids
dc.subjectMembranes
dc.subjectVesicles
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1002/cphc.200700611
dc.description.sourcetitleChemPhysChem
dc.description.volume9
dc.description.issue5
dc.description.page721-728
dc.description.codenCPCHF
dc.identifier.isiut000255082600009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

94
checked on Nov 8, 2019

WEB OF SCIENCETM
Citations

93
checked on Nov 8, 2019

Page view(s)

40
checked on Oct 26, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.