Please use this identifier to cite or link to this item:
Title: Formation of FeSi and FeSi2 films from cis-Fe(SiCl3)2(CO)4 by MOCVD -precursor versus substrate control
Authors: Zybill, C.E.
Huang, W. 
Keywords: Deposition mechanism
Iron silicides
Issue Date: Aug-1999
Citation: Zybill, C.E.,Huang, W. (1999-08). Formation of FeSi and FeSi2 films from cis-Fe(SiCl3)2(CO)4 by MOCVD -precursor versus substrate control. Inorganica Chimica Acta 291 (1-2) : 380-387. ScholarBank@NUS Repository.
Abstract: The low pressure chemical vapor deposition (LPCVD) reaction of cis-Fe(SiCl3)2(CO)4 yields iron silicides of different composition and texture depending on the substrate. On a (100) Si surface, highly oriented orthorhombic β-FeSi2 is formed due to lattice matching between Si and β-FeSi2 (1.4% mismatch). The imprint effect of the (100) Si surface plays a dominant role. On amorphous Pyrex glass substrates, a porous aggregate of polycrystalline cubic FeSi is formed. In this case the film formation process is determined by the decomposition kinetics of the precursor. The mechanism of the iron silicide FeSi formation has been investigated by in situ photoelectron (PE) spectroscopy in the surface controlled regime up to 600°C. The experimental data provide evidence for SiCl4- and CO-elimination steps involving silylene complexes. The reaction is assumed to occur at the surface via adsorbed intermediates. A density functional theory (DFT) calculation approximated for the gas phase shows the elimination of SiCl4 to be endothermic by 15.0 kcal mol-1. The mechanism considered in the calculations involves Cl transfer from Si1 to Si2 of cis-Fe(SiCl3)2(CO)4 accompanied by Fe-Si2 bond fission and formation of [Fe(=SiCl2)(CO)4] (calc. energy of activation 47 kcal mol-1, Fe=Si bond dissociation energy 52 kcal mol-1). © 1999 Elsevier Science S.A.
Source Title: Inorganica Chimica Acta
ISSN: 00201693
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Jan 17, 2021

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.