Please use this identifier to cite or link to this item: https://doi.org/10.1038/nmat3804
DC FieldValue
dc.titleEnhancing multiphoton upconversion through energy clustering at sublattice level
dc.contributor.authorWang, J.
dc.contributor.authorDeng, R.
dc.contributor.authorMacdonald, M.A.
dc.contributor.authorChen, B.
dc.contributor.authorYuan, J.
dc.contributor.authorWang, F.
dc.contributor.authorChi, D.
dc.contributor.authorAndy Hor, T.S.
dc.contributor.authorZhang, P.
dc.contributor.authorLiu, G.
dc.contributor.authorHan, Y.
dc.contributor.authorLiu, X.
dc.date.accessioned2014-10-16T08:28:05Z
dc.date.available2014-10-16T08:28:05Z
dc.date.issued2014-02
dc.identifier.citationWang, J., Deng, R., Macdonald, M.A., Chen, B., Yuan, J., Wang, F., Chi, D., Andy Hor, T.S., Zhang, P., Liu, G., Han, Y., Liu, X. (2014-02). Enhancing multiphoton upconversion through energy clustering at sublattice level. Nature Materials 13 (2) : 157-162. ScholarBank@NUS Repository. https://doi.org/10.1038/nmat3804
dc.identifier.issn14761122
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/93762
dc.description.abstractThe applications of lanthanide-doped upconversionnanocrystals in biological imaging, photonics, photovoltaics and therapeutics have fuelled a growing demand for rational control over the emission profiles of the nanocrystals. A common strategy for tuning upconversion luminescence is to control the doping concentration of lanthanide ions. However, the phenomenon of concentration quenching of the excited state at high doping levels poses a significant constraint. Thus, the lanthanide ions have to be stringently kept at relatively low concentrations to minimize luminescence quenching. Here we describe a new class of upconversion nanocrystals adopting an orthorhombic crystallographic structure in which the lanthanide ions are distributed in arrays of tetrad clusters. Importantly, this unique arrangement enables the preservation of excitation energy within the sublattice domain and effectively minimizes the migration of excitation energy to defects, even in stoichiometric compounds with a high Yb 3+ content (calculated as 98 mol%). This allows us to generate an unusual four-photon-promoted violet upconversion emission from Er 3+ with an intensity that is more than eight times higher than previously reported. Our results highlight that the approach to enhancing upconversion through energy clustering at the sublattice level may provide new opportunities for light-triggered biological reactions and photodynamic therapy. © 2014 Macmillan Publishers Limited. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1038/nmat3804
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1038/nmat3804
dc.description.sourcetitleNature Materials
dc.description.volume13
dc.description.issue2
dc.description.page157-162
dc.description.codenNMAAC
dc.identifier.isiut000330182700021
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

310
checked on Aug 21, 2019

WEB OF SCIENCETM
Citations

297
checked on Aug 14, 2019

Page view(s)

335
checked on Aug 17, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.