Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.chroma.2008.04.027
DC FieldValue
dc.titleDetermination of basic degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry
dc.contributor.authorLee, H.S.N.
dc.contributor.authorSng, M.T.
dc.contributor.authorBasheer, C.
dc.contributor.authorLee, H.K.
dc.date.accessioned2014-10-16T08:25:29Z
dc.date.available2014-10-16T08:25:29Z
dc.date.issued2008-07-04
dc.identifier.citationLee, H.S.N., Sng, M.T., Basheer, C., Lee, H.K. (2008-07-04). Determination of basic degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry. Journal of Chromatography A 1196-1197 (1-2) : 125-132. ScholarBank@NUS Repository. https://doi.org/10.1016/j.chroma.2008.04.027
dc.identifier.issn00219673
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/93539
dc.description.abstractHollow fibre-protected liquid-phase microextraction (HF-LPME) together with gas chromatography-mass spectrometry was, for the first time, investigated for the in-situ derivatisation and analysis of basic degradation products of chemical warfare agents in water samples. The degradation products studied were those of nerve and blister agents, and a psychotomimetic agent. Extractions with in-situ derivatisation were successfully performed using a mixture of solvent and derivatising agent. The protection of the moisture-sensitive derivatising agent was afforded by the hydrophobic hollow fibre. Parameters such as type of derivatising agent, extraction solvent, pH, salt concentration, stirring speed and extraction time were optimised using spiked deionised water samples. The linear range established was between 0.05 and 25 μg ml-1 depending on analyte, with squared regression coefficients ranging from 0.9959 to 0.9996. Relative standard deviations (RSDs) ranged from 6% to 10%. As comparison, solid-phase microextraction (SPME) was also evaluated and extraction conditions such as pH, salt concentration, stirring speed and extraction time were optimised. This work also represented the first report of such an in-situ derivatisation approach for SPME of basic analytes. The linear range established was between 0.5 and 25 μg ml-1 depending on analyte, with squared regression coefficients ranging from 0.9946 to 0.9998. RSDs ranged from 5% to 22%. The limits of detection of HF-LPME (0.04-0.36 μg l-1) showed improvement over those of SPME (0.06-0.77 μg l-1). © 2008 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.chroma.2008.04.027
dc.sourceScopus
dc.subjectChemical warfare agent degradation products
dc.subjectGas chromatography-mass spectrometry
dc.subjectHollow fibre
dc.subjectLiquid-phase microextraction
dc.subjectSilylation
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1016/j.chroma.2008.04.027
dc.description.sourcetitleJournal of Chromatography A
dc.description.volume1196-1197
dc.description.issue1-2
dc.description.page125-132
dc.description.codenJCRAE
dc.identifier.isiut000257471600019
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

30
checked on Jan 24, 2022

WEB OF SCIENCETM
Citations

24
checked on Jan 17, 2022

Page view(s)

131
checked on Jan 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.