Please use this identifier to cite or link to this item:
Title: Subsidence and carbon loss in drained tropical peatlands
Authors: Hooijer, A.
Page, S.
Jauhiainen, J.
Lee, W.A. 
Lu, X.X.
Idris, A.
Anshari, G.
Issue Date: 2012
Citation: Hooijer, A., Page, S., Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A., Anshari, G. (2012). Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9 (3) : 1053-1071. ScholarBank@NUS Repository.
Abstract: Conversion of tropical peatlands to agriculture leads to a release of carbon from previously stable, longterm storage, resulting in land subsidence that can be a surrogate measure of CO2 emissions to the atmosphere. We present an analysis of recent large-scale subsidence monitoring studies in Acacia and oil palm plantations on peatland in SE Asia, and compare the findings with previous studies. Subsidence in the first 5 yr after drainage was found to be 142 cm, of which 75 cm occurred in the first year. After 5 yr, the subsidence rate in both plantation types, at average water table depths of 0.7 m, remained constant at around 5 cm yr-1. The results confirm that primary consolidation contributed substantially to total subsidence only in the first year after drainage, that secondary consolidation was negligible, and that the amount of compaction was also much reduced within 5 yr. Over 5 yr after drainage, 75% of cumulative subsidence was caused by peat oxidation, and after 18 yr this was 92 %. The average rate of carbon loss over the first 5 yr was 178 t CO2eq ha-1 yr-1, which reduced to 73 t CO2eq ha-1 yr-1 over subsequent years, potentially resulting in an average loss of 100 t CO2eq ha -1 yr-1 over 25 yr. Part of the observed range in subsidence and carbon loss values is explained by differences in water table depth, but vegetation cover and other factors such as addition of fertilizers also influence peat oxidation. A relationship with groundwater table depth shows that subsidence and carbon loss are still considerable even at the highest water levels theoretically possible in plantations. This implies that improved plantation water management will reduce these impacts by 20% at most, relative to current conditions, and that high rates of carbon loss and land subsidence are inevitable consequences of conversion of forested tropical peatlands to other land uses. © Author(s) 2012.
Source Title: Biogeosciences
ISSN: 17264170
DOI: 10.5194/bg-9-1053-2012
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Sep 28, 2022


checked on Sep 28, 2022

Page view(s)

checked on Sep 22, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.