Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.micromeso.2003.08.018
Title: Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores
Authors: Qiao, S.Z.
Bhatia, S.K.
Zhao, X.S. 
Keywords: Adsorption isotherm
Capillary coexistence
Capillary condensation
Hysteresis
Mesopore
Multilayer adsorption
Issue Date: 4-Nov-2003
Citation: Qiao, S.Z., Bhatia, S.K., Zhao, X.S. (2003-11-04). Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores. Microporous and Mesoporous Materials 65 (2-3) : 287-298. ScholarBank@NUS Repository. https://doi.org/10.1016/j.micromeso.2003.08.018
Abstract: MCM-41 periodic mesoporous silicates with a high degree of structural ordering are synthesized and used as model adsorbents to study the isotherm prediction of nitrogen adsorption. The nitrogen adsorption isotherm at 77 K for a macroporous silica is measured and used in high-resolution αs-plot comparative analysis to determine the external surface area, total surface area and primary mesopore volume of the MCM-41 materials. Adsorption equilibrium data of nitrogen on the different pore size MCM-41 samples (pore diameters from 2.40 to 4.92 nm) are also obtained. Based on the Broekhoff and de Boer' thermodynamic analysis, the nitrogen adsorption isotherms for the different pore size MCM-41 samples are interpreted using a novel strategy, in which the parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting only the multilayer region prior to capillary condensation for C16 MCM-41. Subsequently the entire isotherm, including the phase transition, is predicted for all the different pore size MCM-41 samples without any fitting. The results show that the prediction of multilayer adsorption and total adsorbed amount are in good agreement with the experimental isotherms. The predictions of the relative pressure corresponding to capillary equilibrium (coexistence) transition agree remarkably with experimental data on the adsorption branch even for hysteretic isotherms, confirming that this is the branch appropriate for pore size distribution analysis. The impact of pore radius on the adsorption film thickness and capillary coexistence pressure is also investigated, and found to agree with the experimental data. © 2003 Elsevier Inc. All rights reserved.
Source Title: Microporous and Mesoporous Materials
URI: http://scholarbank.nus.edu.sg/handle/10635/92265
ISSN: 13871811
DOI: 10.1016/j.micromeso.2003.08.018
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.