Please use this identifier to cite or link to this item:
Title: Modeling and control of a nonlinear process based on the extended self-organizing map network
Authors: Zhuang, H. 
Ang, W.-J.
Ohshima, M.
Chiu, M.-S. 
Issue Date: 12-Jun-2002
Citation: Zhuang, H.,Ang, W.-J.,Ohshima, M.,Chiu, M.-S. (2002-06-12). Modeling and control of a nonlinear process based on the extended self-organizing map network. Industrial and Engineering Chemistry Research 41 (12) : 2941-2947. ScholarBank@NUS Repository.
Abstract: An extended self-organizing map (ESOM) network, which consists of a self-organization phase and an optimization phase, was recently developed to construct a local model network (LMN) automatically using the plant data. However, this previous result suffers two drawbacks: (1) increased computation time in the self-organization phase as the number of local models increases, (2) lack of checking stability conditions for both local models and LMN. To overcome these problems, an improved algorithm for the ESOM network is developed in this paper by employing a competitive learning algorithm for data clustering in the self-organization phase and parametric constraints are formulated in the optimization phase to handle the stability of local models. In addition, the global stability of LMN is addressed. With LMN constructed by the ESOM network, it serves as a basis for building a nonlinear controller that combines several local controllers through the weighting functions obtained by the ESOM algorithm. Literature examples are used to illustrate the proposed ESOM-based modeling and controller design method.
Source Title: Industrial and Engineering Chemistry Research
ISSN: 08885885
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Sep 22, 2022

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.