Please use this identifier to cite or link to this item:
Title: PPO-based acid-base polymer blend membranes for direct methanol fuel cells
Authors: Fu, R.-Q. 
Julius, D.
Hong, L. 
Lee, J.-Y. 
Keywords: Acid-base polymer blends
Direct methanol fuel cell
Ionic crosslinking
Poly(phenylene oxide)
Proton exchange membrane
Issue Date: 15-Sep-2008
Citation: Fu, R.-Q., Julius, D., Hong, L., Lee, J.-Y. (2008-09-15). PPO-based acid-base polymer blend membranes for direct methanol fuel cells. Journal of Membrane Science 322 (2) : 331-338. ScholarBank@NUS Repository.
Abstract: New acid-base polymer blend membranes for direct methanol fuel cells (DMFC) have been designed using a very accessible commercial polymer, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). The preparation begins with the sulfonation and bromination of PPO to sulfonated PPO (SPPO) and bromomethylated PPO (BrPPO), respectively. Blend membranes are formed by mixing n-propylamine(PrNH2)-neutralized SPPO and PrNH2-aminated BrPPO solutions in N-methyl-2-pyrrolidone (NMP), and casting the mixed solution on glass petri dishes followed by acidification with aqueous hydrochloric acid. The compatibility between the acid and base components of the blend is assured by using acidic and basic polymers deriving from the same parent polymer (PPO). Ionic crosslinking is established between the sulfonic groups of SPPO and the amine groups of aminated BrPPO. The ionic crosslinking strengthens the membrane dimensional stability by reducing water uptake and membrane swelling up to temperatures as high as 80 °C. The membranes fabricated as such display good resistance to methanol crossover amidst some, but acceptable loss of proton conductivity. The characteristic factor (i.e. the ratio of proton conductivity to methanol permeability) increases noticeably with the BrPPO content, with the sample containing 30 wt.% BrPPO showing a 16-fold improvement over Nafion 117. The mechanical properties and oxidative stability of the blend membranes also satisfy the requirements for fuel cell assembly and operation. © 2008 Elsevier B.V. All rights reserved.
Source Title: Journal of Membrane Science
ISSN: 03767388
DOI: 10.1016/j.memsci.2008.06.002
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 24, 2022


checked on Jun 16, 2022

Page view(s)

checked on Jun 23, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.