Please use this identifier to cite or link to this item:
Title: Genetic programming-based approach to elucidate biochemical interaction networks from data
Authors: Kandpal, M.
Kalyan, C.M. 
Samavedham, L. 
Issue Date: 2013
Citation: Kandpal, M., Kalyan, C.M., Samavedham, L. (2013). Genetic programming-based approach to elucidate biochemical interaction networks from data. IET Systems Biology 7 (1) : 18-25. ScholarBank@NUS Repository.
Abstract: Biochemical systems are characterised by cyclic/reversible reciprocal actions, non-linear interactions and a mixed relationship structures (linear and non-linear; static and dynamic). Deciphering the architecture of such systems using measured data to provide quantitative information regarding the nature of relationships that exist between the measured variables is a challenging proposition. Causality detection is one of the methodologies that are applied to elucidate biochemical networks from such data. Autoregressive-based modelling approach such as granger causality, partial directed coherence, directed transfer function and canonical variate analysis have been applied on different systems for deciphering such interactions, but with limited success. In this study, the authors propose a genetic programming-based causality detection (GPCD) methodology which blends evolutionary computation-based procedures along with parameter estimation methods to derive a mathematical model of the system. Application of the GPCD methodology on five data sets that contained the different challenges mentioned above indicated that GPCD performs better than the other methods in uncovering the exact structure with less false positives. On a glycolysis data set, GPCD was able to fill the 'interaction gaps' which were missed by other methods. © The Institution of Engineering and Technology 2013.
Source Title: IET Systems Biology
ISSN: 17518849
DOI: 10.1049/iet-syb.2012.0011
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Mar 22, 2023


checked on Mar 22, 2023

Page view(s)

checked on Mar 16, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.