Please use this identifier to cite or link to this item:
Title: Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles
Authors: Shi, Z. 
Neoh, K.G. 
Kang, E.T. 
Wang, W.
Keywords: Antibacterial
Mechanical properties
PMMA bone cement
Issue Date: Apr-2006
Citation: Shi, Z., Neoh, K.G., Kang, E.T., Wang, W. (2006-04). Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27 (11) : 2440-2449. ScholarBank@NUS Repository.
Abstract: Although total joint replacement has become commonplace in recent years, bacterial infection remains a significant complication following this procedure. One approach to reduce the incidence of joint replacement infection is to add antimicrobial agents to the bone cement used to fix the implant. In this in vitro study, we investigated the use of chitosan nanoparticles (CS NP) and quaternary ammonium chitosan derivative nanoparticles (QCS NP) as bactericidal agents in poly(methyl methacrylate) (PMMA) bone cement with and without gentamicin. The antibacterial activity was tested against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). A 10 3-fold reduction in the number of viable bacterial cells upon contact with the surface was achievable using QCS NP at a nanoparticle/bone cement weight ratio of 15%. The inhibition of S. aureus and S. epidermidis growth on the surface of the CS NP and QCS NP-loaded bone cements was clearly shown using the LIVE/DEAD Baclight bacterial viability kits and fluorescence microscopy. The CS NP and QCS NP also provided a significant additional bactericidal effect to gentamicin-loaded bone cement. The antibacterial effectiveness remained high even after the modified bone cements had been immersed for 3 weeks in an aqueous medium. No cytotoxic effect of the CS NP- and QCS NP-loaded cements was shown in a mouse fibroblast MTT cytotoxicity assay. Mechanical tests indicated that the addition of the CS and QCS in nanoparticulate form allowed the retention of a significant degree of the bone cement's strength. These results indicate a new promising strategy for combating joint implant infection. © 2005 Elsevier Ltd. All rights reserved.
Source Title: Biomaterials
ISSN: 01429612
DOI: 10.1016/j.biomaterials.2005.11.036
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 16, 2021


checked on Jun 16, 2021

Page view(s)

checked on Jun 8, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.