Please use this identifier to cite or link to this item:
Title: Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers
Authors: Tin, P.S. 
Chung, T.-S. 
Hill, A.J.
Issue Date: 29-Sep-2004
Citation: Tin, P.S.,Chung, T.-S.,Hill, A.J. (2004-09-29). Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers. Industrial and Engineering Chemistry Research 43 (20) : 6476-6483. ScholarBank@NUS Repository.
Abstract: We have conducted an extensive study to investigate the effects of nonsolvent (methanol, ethanol, 1-propanol, and 1-butanol) pretreatment of polyimide precursor before carbonization on membrane structure and on the separation performance of carbon molecular sieve membranes (CMSMs). The measured gas separation properties show that carbon membranes prepared with nonsolvent pretreatment have a lower flux and higher selectivity, suggesting a narrower pore size distribution. XRD data show a slightly smaller d spacing in pretreated CMSMs. Positron annihilation lifetime spectroscopy results indicate smaller pores in the CMSMs pretreated with nonsolvents. The best separation efficiency is obtained by carbon membranes pyrolyzed from ethanol-treated polymers. The CO2/CH4 selectivity of Matrimd- and P84-derived carbon membrane increases significantly from 61 to 169 and 89 to 139, respectively, after ethanol pretreatment as compared to those carbon membranes when untreated. This study demonstrates for the first time that nonsolvent pretreatment of polyimide precursors can play an essential role in the transport properties of high-performance CMSMs.
Source Title: Industrial and Engineering Chemistry Research
ISSN: 08885885
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Sep 27, 2020

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.