Please use this identifier to cite or link to this item:
Title: Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation
Authors: Bhagat, A.A.S.
Hou, H.W.
Li, L.D.
Lim, C.T. 
Han, J.
Issue Date: 7-Jun-2011
Citation: Bhagat, A.A.S., Hou, H.W., Li, L.D., Lim, C.T., Han, J. (2011-06-07). Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab on a Chip - Miniaturisation for Chemistry and Biology 11 (11) : 1870-1878. ScholarBank@NUS Repository.
Abstract: Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 105 fold enrichment over red blood cells (RBCs) and 1.2 × 104 fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ∼108 cells min-1 through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies. © 2011 The Royal Society of Chemistry.
Source Title: Lab on a Chip - Miniaturisation for Chemistry and Biology
ISSN: 14730197
DOI: 10.1039/c0lc00633e
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 17, 2021


checked on Jun 17, 2021

Page view(s)

checked on Jun 21, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.